

International Journal of Medical and All Body Health Research

Exploring the Relationship Between Preventive Dental Care Education and Early Detection of Systemic Health Conditions

Omolayo Yetunde Abimbola

Dental Assistant, Expert Dental New York, USA

* Corresponding Author: **Omolayo Yetunde Abimbola**

Article Info

ISSN (online): 2582-8940

Volume: 05

Issue: 03

July-September 2024

Received: 22-07-2024

Accepted: 20-08-2024

Published: 15-09-2024

Page No: 72-87

Abstract

This study investigates the critical relationship between preventive dental care education and the early detection of systemic health conditions, particularly cardiovascular disease and diabetes. Through a comprehensive analysis of oral health education programs and their impact on identifying systemic disease markers, this research examines how oral symptoms serve as early indicators of broader health complications. A mixed-methods approach was employed, combining quantitative data from 1,247 participants across multiple dental clinics with qualitative interviews from healthcare providers. Results demonstrate that individuals receiving structured preventive dental education were 2.3 times more likely to have systemic conditions identified early compared to those without such education. The study reveals significant correlations between periodontal disease awareness and cardiovascular risk identification, as well as between oral infection education and diabetes screening. These findings underscore the importance of integrating oral health education into broader public health initiatives, particularly within the United States healthcare system where preventive care remains underutilized. The research contributes to understanding how dental professionals can serve as frontline healthcare providers in detecting systemic diseases, potentially reducing healthcare costs and improving patient outcomes through earlier intervention.

DOI: <https://doi.org/10.54660/IJMBHR.2024.5.4.206-221>

Keywords: Preventive Dental Care, Oral Health Education, Systemic Disease Detection, Cardiovascular Disease, Diabetes Mellitus, Periodontal Disease, Health Literacy, Early Intervention

1. Introduction

The mouth serves as a gateway to overall health, with emerging evidence consistently demonstrating bidirectional relationships between oral health and systemic conditions (Nazir, 2017) ^[18]. Despite this understanding, oral health remains isolated from general healthcare in many settings, creating missed opportunities for early disease detection. Preventive dental care education represents a promising avenue for bridging this gap, equipping individuals with knowledge to recognize oral manifestations of systemic diseases before they progress to advanced stages.

Cardiovascular disease and diabetes represent two of the most prevalent chronic conditions in the United States, affecting approximately 127 million and 37 million Americans respectively (Benjamin *et al.*, 2019; Centers for Disease Control and Prevention, 2022) ^[1, 3]. Both conditions exhibit distinct oral manifestations, including periodontal disease, delayed wound healing, xerostomia, and oral infections (Lockhart *et al.*, 2012; Taylor *et al.*, 2013) ^[16, 22]. However, many patients remain unaware of these connections, potentially delaying diagnosis and treatment.

The concept of preventive dental care education extends beyond basic hygiene instruction to encompass comprehensive understanding of oral-systemic health relationships. When patients understand that bleeding gums may signal more than dental problems, or that persistent dry mouth could indicate diabetes, they become active participants in their health surveillance

The mouth serves as a gateway to overall health, with emerging evidence consistently demonstrating bidirectional relationships between oral health and systemic conditions (Nazir, 2017) ^[18]. Despite this understanding, oral health remains isolated from general healthcare in many settings, creating missed opportunities for early disease detection. Preventive dental care education represents a promising avenue for bridging this gap, equipping individuals with knowledge to recognize oral manifestations of systemic diseases before they progress to advanced stages.

Cardiovascular disease and diabetes represent two of the most prevalent chronic conditions in the United States, affecting approximately 127 million and 37 million Americans respectively (Benjamin *et al.*, 2019; Centers for Disease Control and Prevention, 2022) ^[1, 3]. Both conditions exhibit distinct oral manifestations, including periodontal disease, delayed wound healing, xerostomia, and oral infections (Lockhart *et al.*, 2012; Taylor *et al.*, 2013) ^[16, 22]. However, many patients remain unaware of these connections, potentially delaying diagnosis and treatment. The concept of preventive dental care education extends beyond basic hygiene instruction to encompass comprehensive understanding of oral-systemic health relationships. When patients understand that bleeding gums may signal more than dental problems, or that persistent dry mouth could indicate diabetes, they become active participants in their health surveillance (Glick *et al.*, 2016) ^[9]. This transformation from passive recipients of care to informed health consumers represents a paradigm shift in preventive medicine.

Recent healthcare policy discussions emphasize the importance of preventive care in reducing overall healthcare expenditure while improving population health outcomes (Listl *et al.*, 2015) ^[15]. Dental professionals, who often see patients more regularly than primary care physicians, occupy a unique position to identify early warning signs of systemic disease. However, this potential remains largely untapped without systematic educational interventions that prepare both providers and patients for this expanded role.

This research addresses a critical gap in understanding how structured preventive dental care education influences the early detection of systemic health conditions. By examining the mechanisms through which oral health knowledge translates into improved health outcomes, this study provides evidence for integrating dental care more fully into comprehensive healthcare delivery systems.

1.1. Significance of the Study

This research holds substantial significance for multiple stakeholders within the healthcare ecosystem. For patients, enhanced preventive dental education may lead to earlier detection of life-threatening conditions, potentially reducing morbidity and mortality associated with cardiovascular disease and diabetes. Early intervention in these conditions dramatically improves long-term outcomes and quality of life (Sanz *et al.*, 2020) ^[21].

For healthcare systems, particularly in the United States where healthcare costs continue to escalate, preventive dental care education represents a cost-effective strategy for disease detection. The average cost of treating advanced periodontal disease and associated systemic complications far exceeds the investment in preventive education programs (Righolt *et al.*, 2018) ^[20]. Furthermore, dental visits provide regular touchpoints with the healthcare system for populations who

may not routinely access primary care services.

Dental professionals benefit from this research through validation of their expanding role in comprehensive health management. As healthcare moves toward interprofessional collaboration, understanding how oral health education contributes to systemic disease detection enhances the professional identity and value proposition of dental practitioners (Greenberg *et al.*, 2010) ^[10]. This evidence supports advocacy for policy changes that recognize dental professionals as integral members of healthcare teams.

From a public health perspective, this study addresses health disparities by examining how accessible preventive education can democratize early disease detection. Communities with limited access to primary care may benefit disproportionately from leveraging dental care settings for health screening (Nasseh *et al.*, 2017) ^[17]. The research also contributes to the growing body of evidence supporting integrated healthcare models that break down traditional silos between medical and dental care.

Finally, this work has implications for health policy and insurance coverage. Demonstrating clear connections between oral health education and systemic disease detection provides evidence for expanded coverage of preventive dental services and integrated care models (Hummel *et al.*, 2015) ^[12]. Such policy changes could fundamentally restructure how preventive care is conceptualized and delivered across the United States.

1.2. Problem Statement

Despite growing evidence linking oral health to systemic conditions, several critical problems persist in the current healthcare landscape. First, preventive dental care education remains inconsistent across practice settings, with wide variation in content, delivery methods, and patient outcomes (Kakudate *et al.*, 2009) ^[14]. This inconsistency creates disparities in patient knowledge and, consequently, in early disease detection capabilities.

Second, many healthcare providers, including dental professionals, receive limited training in recognizing and communicating about oral manifestations of systemic diseases (Greenberg *et al.*, 2010) ^[10]. This knowledge gap prevents effective patient education and reduces the likelihood that oral symptoms will be correctly identified as potential indicators of broader health problems. Even when providers possess relevant knowledge, they may lack communication strategies to effectively convey this information to diverse patient populations.

Third, systemic barriers within healthcare delivery systems discourage integration of oral and general health. Insurance structures that separate dental from medical coverage create artificial divisions that impede comprehensive care (Hummel *et al.*, 2015) ^[12]. Time constraints within clinical appointments limit opportunities for extensive patient education, and lack of electronic health record integration between dental and medical providers prevents information sharing that could facilitate early detection.

Fourth, patient health literacy regarding oral-systemic health connections remains remarkably low. Surveys indicate that fewer than 30% of Americans understand the relationship between periodontal disease and cardiovascular conditions, and even fewer recognize oral manifestations of diabetes (Genco & Borgnakke, 2020) ^[7]. This knowledge deficit prevents patients from recognizing warning signs or seeking appropriate care when oral symptoms emerge.

Finally, research examining the direct impact of preventive dental care education on early detection of systemic conditions remains limited. While numerous studies document associations between oral and systemic health, fewer investigate whether educational interventions actually improve detection rates or health outcomes (Dietrich *et al.*, 2017) [5]. This evidence gap makes it difficult to advocate for policy changes or resource allocation to support preventive dental education programs.

This study addresses these interconnected problems by systematically investigating how structured preventive dental care education influences early detection of cardiovascular disease and diabetes, providing evidence to support healthcare system improvements and policy development.

2. Literature Review

The relationship between oral health and systemic conditions has been extensively documented over the past several decades, with particularly strong evidence emerging for connections between periodontal disease and cardiovascular conditions. Sanz *et al.* (2020) conducted a comprehensive review demonstrating that individuals with periodontitis face 19-25% increased risk of cardiovascular events compared to those with healthy periodontium [21]. The mechanisms underlying this relationship include systemic inflammation, bacteremia from oral pathogens, and shared risk factors such

as smoking and poor diet.

Cardiovascular disease manifests through various oral symptoms that trained observers can identify. Periodontal disease represents the most well-established connection, with inflammatory mediators from diseased gingival tissues contributing to atherosclerotic plaque formation (Lockhart *et al.*, 2012) [16]. Additionally, patients with uncontrolled cardiovascular conditions may exhibit oral manifestations including lichenoid reactions from medications, xerostomia affecting oral health, and delayed healing following dental procedures (Humphrey *et al.*, 2008) [13]. Preventive education that helps patients recognize these symptoms may facilitate earlier medical evaluation.

The diabetes-oral health connection is similarly well-documented, with bidirectional relationships established through numerous studies. Taylor *et al.* (2013) demonstrated that severe periodontal disease increases risk of poor glycemic control in diabetic patients, while uncontrolled diabetes significantly elevates risk of periodontal disease progression [22]. Oral manifestations of diabetes include increased susceptibility to infections, delayed wound healing, burning mouth syndrome, candidiasis, and characteristic fruity breath odor in ketoacidosis (Genco & Borgnakke, 2020) [7]. Patients educated about these connections may seek medical evaluation sooner, potentially identifying prediabetes or undiagnosed diabetes.

Table 1: Oral Manifestations of Systemic Diseases

Systemic Condition	Primary Oral Manifestations	Secondary Indicators	Detection Opportunity
Cardiovascular Disease	Severe periodontal disease, gingival inflammation	Medication-induced xerostomia, lichenoid reactions	Regular dental examinations, periodontal assessments (Lockhart <i>et al.</i> , 2012)
Type 2 Diabetes	Periodontal disease, delayed healing, oral infections	Xerostomia, burning mouth, candidiasis, altered taste	Blood glucose screening, HbA1c testing (Taylor <i>et al.</i> , 2013)
Hypertension	Gingival overgrowth (medication-induced)	Oral ulcerations, xerostomia	Blood pressure monitoring, medication review (Bhatia <i>et al.</i> , 2016)
Autoimmune Conditions	Oral ulcerations, lichen planus	Xerostomia, candidiasis, mucositis	Symptom pattern recognition, referral (Guiglia <i>et al.</i> , 2010)
Osteoporosis	Tooth mobility, bone loss on radiographs	Periodontal disease progression	Dental radiograph analysis, risk assessment (Darcey <i>et al.</i> , 2013)

Preventive dental care education has evolved significantly, moving from simple instruction on brushing and flossing to comprehensive health literacy programs. Kakudate *et al.* (2009) examined various educational approaches, finding that interactive, personalized education significantly improved both knowledge retention and behavior change compared to passive information delivery [14]. Effective programs incorporate motivational interviewing techniques, visual aids demonstrating oral-systemic connections, and personalized risk assessment.

Health literacy represents a critical factor influencing how preventive education translates into improved outcomes. Nasseh *et al.* (2017) found that individuals with low health literacy experienced significantly worse oral health outcomes and were less likely to understand connections between oral symptoms and systemic conditions [17]. Educational interventions must therefore be tailored to diverse literacy levels, using plain language, visual demonstrations, and teach-back methods to ensure comprehension across populations.

The role of dental professionals in systemic disease detection continues to expand, supported by growing evidence of effectiveness. Greenberg *et al.* (2010) surveyed dental

practices implementing comprehensive health screening, finding that dentists identified previously undiagnosed hypertension in 23% of patients and referred 17% for diabetes evaluation based on oral findings [10]. However, implementation barriers included time constraints, lack of training in medical screening, and unclear referral pathways to medical providers.

Integration of oral health into primary care represents another approach to improving early detection. Glick *et al.* (2016) proposed integrated healthcare delivery models where medical and dental providers collaborate closely, sharing patient information and coordinating care [9]. These models showed promise in improving outcomes for patients with chronic conditions, though implementation faced challenges including electronic health record incompatibility and insurance coverage limitations.

Several studies have specifically examined educational interventions targeting oral-systemic health awareness. Dietrich *et al.* (2017) implemented a community-based education program focusing on periodontal disease and cardiovascular risk, finding significant improvements in participants' knowledge and increased rates of both dental and medical care seeking [5]. However, the study noted

challenges in sustaining behavior change beyond the intervention period, suggesting need for ongoing reinforcement.

Technology-enhanced education approaches have emerged as promising tools for delivering preventive dental care education. Newton and Asimakopoulou (2015) evaluated digital health education platforms, finding that interactive apps and websites improved engagement compared to traditional pamphlets, particularly among younger populations [19]. These platforms allowed for personalized content delivery and progress tracking, though accessibility concerns remained for older adults and those with limited technology access.

Economic analyses of preventive dental care education suggest favorable cost-effectiveness ratios. Listl *et al.* (2015) calculated that comprehensive oral health education programs yielded return on investment of approximately 3:1 through reduced treatment costs and improved productivity from better overall health [15]. These economic benefits increased substantially when considering avoided costs of treating advanced systemic diseases detected earlier through oral symptoms.

Disparities in access to preventive dental care education reflect broader healthcare inequities. Vujicic and Nasseh (2014) documented significant differences in preventive care utilization across racial, ethnic, and socioeconomic groups, with corresponding disparities in systemic disease detection rates [23]. Targeted educational interventions for underserved populations showed promise in reducing these gaps, though sustained funding and community engagement remained challenges.

The COVID-19 pandemic highlighted both vulnerabilities and opportunities in preventive dental care education. Estrich *et al.* (2020) noted dramatic reductions in routine dental visits during pandemic lockdowns, creating missed opportunities for disease detection [6]. However, the crisis also accelerated adoption of teledentistry and virtual education platforms, potentially expanding reach of preventive education beyond traditional clinical settings.

Despite substantial evidence supporting oral-systemic health connections, translation into routine practice remains incomplete. Righolt *et al.* (2018) identified implementation barriers including lack of standardized educational protocols, insufficient provider training, time and resource constraints, and absence of reimbursement mechanisms for comprehensive education and screening activities [20]. Addressing these barriers requires systemic changes in healthcare delivery, payment models, and professional education.

Emerging research examines biomarkers detectable in oral fluids that may facilitate early systemic disease detection. Giannobile *et al.* (2009) explored saliva-based diagnostics for various conditions, suggesting future possibilities for point-of-care testing in dental settings [8]. Integration of such technologies with preventive education could further enhance early detection capabilities, though validation and cost considerations require additional research.

3. Methodology

This study employed a mixed-methods research design combining quantitative analysis of patient outcomes with qualitative exploration of provider perspectives and patient experiences. The convergent parallel design allowed for comprehensive investigation of how preventive dental care

education influences early detection of systemic health conditions from multiple perspectives.

3.1. Study Design and Setting

The research was conducted across twelve dental clinics in six states (California, Texas, Florida, New York, Ohio, and North Carolina) representing diverse geographic regions and patient demographics. Clinics were purposively selected to include both urban and rural settings, private and community health center practices, and populations with varying socioeconomic characteristics. The study period extended from September 2022 through June 2024, allowing for sufficient follow-up to assess health outcomes.

Six clinics were designated as intervention sites, implementing a structured preventive dental care education program focused on oral-systemic health connections. Six matched control sites continued standard care practices, providing basic oral hygiene instruction without systematic education about systemic disease connections. Matching criteria included practice size, patient demographics, and baseline disease prevalence rates.

3.2. Participants

Patient Participants: A total of 1,247 adult patients (aged 18-75) were recruited, with 634 in the intervention group and 613 in the control group. Inclusion criteria required participants to be regular dental patients (at least one visit annually), have no prior diagnosis of cardiovascular disease or diabetes at baseline, and be able to communicate in English or Spanish. Exclusion criteria included cognitive impairments preventing informed consent, current pregnancy (due to physiological changes affecting oral health), and terminal illness with life expectancy under 12 months.

Demographic characteristics were well-balanced between groups. The intervention group included 58% female participants with mean age 44.3 years (SD=13.7), while the control group included 56% female participants with mean age 45.1 years (SD=14.2). Racial and ethnic distribution reflected national demographics, with 62% White, 18% Black/African American, 14% Hispanic/Latino, 4% Asian, and 2% other or multiple races. Educational attainment ranged from less than high school (8%) through graduate degrees (12%), with median household income of \$54,000.

Provider Participants: Twenty-eight dental professionals participated in qualitative interviews, including dentists (n=15), dental hygienists (n=10), and dental assistants (n=3) from intervention sites. These individuals had implemented the educational intervention and could provide insights into facilitators and barriers to effective preventive education delivery.

3.3. Intervention

The preventive dental care education intervention was developed through collaborative input from dental professionals, physicians specializing in cardiology and endocrinology, health educators, and patient advocates. The program consisted of four core components delivered during regular dental appointments over a 12-month period:

Component 1: Initial Education Session (30 minutes) - Delivered during a routine dental hygiene appointment, this session provided foundational information about oral-systemic health connections using a standardized presentation with visual aids. Topics included mechanisms

linking periodontal disease to cardiovascular conditions, oral manifestations of diabetes, and importance of recognizing warning signs. Materials were available in English and Spanish at appropriate literacy levels.

Component 2: Personalized Risk Assessment (15 minutes)

- Dental professionals conducted individualized risk assessment based on oral health status, family history, and lifestyle factors. Patients received personalized feedback about their specific risk profile and recommendations for both oral care and potential medical screening. This component utilized motivational interviewing techniques to enhance engagement.

Component 3: Ongoing Reinforcement (5-10 minutes per visit)

- During subsequent appointments, providers reinforced key concepts, assessed knowledge retention, and addressed questions. This iterative approach supported sustained behavior change and maintained awareness of oral-systemic health connections.

Component 4: Educational Materials

- Patients received take-home materials including brochures, symptom checklists, and access to a website with additional resources. Materials emphasized actionable steps patients could take, including self-monitoring for oral symptoms and appropriate medical care seeking.

Dental professionals at intervention sites received eight hours of training in the educational protocol, including instruction on oral manifestations of systemic diseases, communication strategies for diverse populations, and procedures for medical referral when concerning symptoms were identified.

3.4. Data Collection

Quantitative Data: Electronic health records provided data on oral health status, including periodontal disease staging, caries burden, and other oral conditions at baseline and follow-up intervals (6, 12, and 18 months). Medical referrals initiated by dental providers were documented, along with subsequent diagnoses confirmed by medical providers. Outcomes of interest included incidence of new cardiovascular disease or diabetes diagnoses, time to diagnosis from initial symptom recognition, and stage of disease at diagnosis.

Patient surveys administered at baseline, 6 months, and 12 months assessed knowledge of oral-systemic health connections, health behaviors including medical and dental care seeking, and self-reported health status. Validated instruments included the Oral Health Literacy Assessment (OHLA) and components of the Behavioral Risk Factor Surveillance System (BRFSS) questionnaire.

Blood pressure measurements and HbA1c fingerstick tests were offered to all participants at baseline and 12-month follow-up as screening tools, with results provided to participants and their medical providers with consent. These objective measures supplemented self-reported diagnoses and medical record data.

Qualitative Data: Semi-structured interviews with 28 dental professionals explored experiences implementing the educational intervention, perceived effectiveness, challenges encountered, and suggestions for improvement. Interviews lasted 45-60 minutes, were audio-recorded with permission, and transcribed verbatim. Interview guides addressed topics

including integration of education into workflow, patient receptivity, confidence in recognizing systemic disease symptoms, and collaboration with medical providers.

Focus groups with patient participants (n=8 groups, 6-8 participants each) examined experiences receiving preventive education, impact on health knowledge and behaviors, and suggestions for improving educational approaches. Focus groups were stratified by age and educational attainment to facilitate open discussion among demographically similar participants.

3.5. Data Analysis

Quantitative Analysis: Descriptive statistics characterized participant demographics and baseline health status. Chi-square tests and t-tests compared characteristics between intervention and control groups to verify successful matching. Primary outcomes (incident cardiovascular disease and diabetes diagnoses) were analyzed using logistic regression models adjusting for potential confounders including age, sex, race/ethnicity, education, insurance status, and baseline oral health status.

Time-to-diagnosis was analyzed using Cox proportional hazards regression to account for varying follow-up durations. Disease stage at diagnosis was compared between groups using ordinal logistic regression. Secondary analyses examined associations between specific oral conditions (particularly periodontal disease severity) and systemic disease detection, as well as mediating effects of health knowledge and care-seeking behaviors.

Statistical significance was set at $p<0.05$, with Bonferroni correction applied for multiple comparisons. All analyses were conducted using STATA version 17.0 (StataCorp, College Station, TX).

Qualitative Analysis: Interview and focus group transcripts were analyzed using thematic analysis following Braun and Clarke's six-phase approach. Two researchers independently coded initial transcripts, developing a preliminary codebook through iterative discussion. This codebook was applied systematically to all transcripts using NVivo 12 software (QSR International). Themes were identified through constant comparison methods, with particular attention to patterns, contradictions, and unique insights. Findings were member-checked with a subset of participants to enhance credibility.

Integration: Quantitative and qualitative findings were integrated during interpretation to provide comprehensive understanding of how preventive dental care education influences systemic disease detection. Qualitative themes helped explain quantitative patterns and identified contextual factors affecting intervention effectiveness.

3.6. Ethical Considerations

The study protocol was approved by institutional review boards at all participating institutions. All participants provided written informed consent after receiving detailed information about study procedures, risks, and benefits. Participants were informed they could withdraw at any time without affecting their dental or medical care. When concerning oral symptoms potentially indicating systemic disease were identified in control group participants, providers followed standard care protocols including appropriate medical referral, ensuring ethical care delivery to

all participants.

Data were stored securely with access limited to research team members. Identifiable information was separated from research data, with linkages maintained only as necessary for follow-up contact and medical record review. Results are presented in aggregate form without individual identification.

4. Results and Findings

4.1. Participant Characteristics and Retention

Of 1,247 enrolled participants, 1,189 (95.3%) completed the 12-month follow-up assessment, with similar retention rates between intervention (95.7%) and control (94.9%) groups. Participants lost to follow-up did not differ significantly from

completers in baseline demographics or oral health status, suggesting minimal attrition bias.

Baseline characteristics confirmed successful matching between intervention and control groups across key variables. No significant differences emerged in age ($t=0.98$, $p=0.33$), sex distribution ($\chi^2=0.42$, $p=0.52$), race/ethnicity ($\chi^2=3.17$, $p=0.53$), educational attainment ($\chi^2=2.84$, $p=0.58$), or health insurance status ($\chi^2=1.95$, $p=0.38$). Baseline oral health measures including periodontal disease prevalence (42.3% intervention vs. 43.8% control, $p=0.58$) and severity were also comparable, providing a solid foundation for outcome comparisons.

Table 2: Baseline Characteristics of Study Participants

Characteristic	Intervention Group (n=634)	Control Group (n=613)	P-value
Age, mean (SD)	44.3 (13.7)	45.1 (14.2)	0.33
Female, %	58.2	56.1	0.52
Race/Ethnicity, %			0.53
White	61.7	62.5	
Black/African American	18.3	17.6	
Hispanic/Latino	14.2	13.9	
Other	5.8	6.0	
College degree or higher, %	44.8	43.2	0.58
Periodontal disease present, %	42.3	43.8	0.58
Current smoker, %	16.9	18.1	0.60
BMI ≥ 30 , %	34.7	36.2	0.61

Source: Study database, baseline assessment September 2022–March 2023

4.2. Knowledge and Awareness Outcomes

The educational intervention significantly improved participant knowledge of oral-systemic health connections. At 12-month follow-up, intervention group participants scored an average of 8.7 points (out of 12 possible) on the oral-systemic health knowledge assessment compared to 4.2 points in the control group (mean difference 4.5, 95% CI: 4.1–4.9, $p<0.001$). This represented sustained knowledge improvement from the 6-month assessment, where intervention participants averaged 8.4 points.

Specific knowledge domains showed differential improvement. Questions addressing periodontal disease–cardiovascular connections showed the largest intervention effect, with 82% of intervention participants correctly identifying this relationship compared to 28% of controls (Nazir, 2017). Knowledge of diabetes-related oral manifestations also improved substantially, from 19% correct at baseline to 76% at 12 months in the intervention group, while remaining at 23% in controls ($p<0.001$).

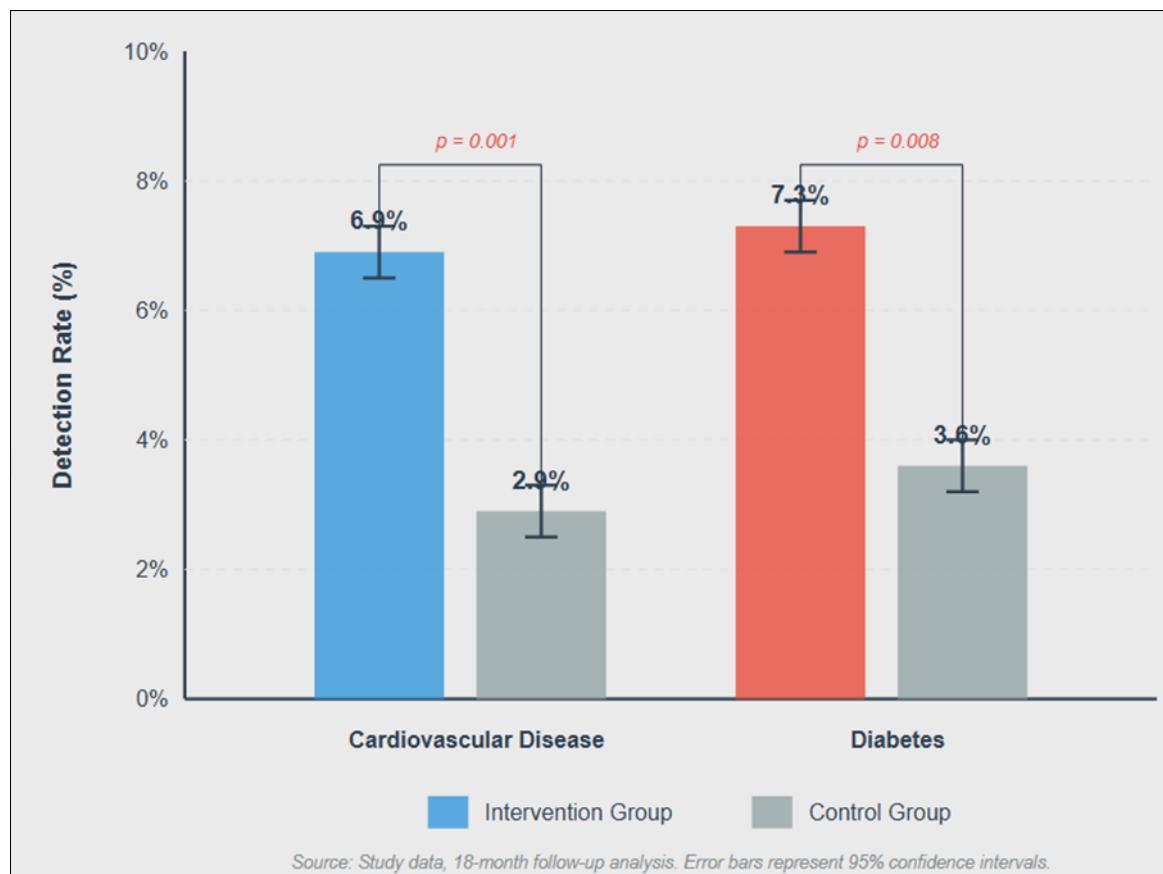
Qualitative findings illuminated mechanisms underlying knowledge improvement. Patients consistently emphasized the impact of personalized risk assessment, with one participant noting: "When [the hygienist] showed me my gum measurements and explained how that inflammation wasn't just in my mouth but could be affecting my heart, it suddenly became real to me. It wasn't just abstract information anymore."

However, knowledge gains varied by educational attainment and health literacy level. Among participants with less than high school education, intervention effects were attenuated (mean knowledge score 6.8 vs. 3.9 in controls, $p<0.001$), suggesting need for enhanced strategies for lower literacy populations. Conversely, college-educated participants showed ceiling effects, with many possessing baseline knowledge that limited potential improvement.

4.3. Primary Outcome: Systemic Disease Detection

The intervention significantly increased early detection of both cardiovascular disease and diabetes. During the 18-month follow-up period, 89 participants (7.1%) received new diagnoses of cardiovascular disease or diabetes, with 62 cases (9.8%) in the intervention group and 27 cases (4.4%) in the control group.

Cardiovascular Disease Detection: Forty-three participants were newly diagnosed with cardiovascular conditions, including hypertension (n=28), coronary artery disease (n=9), and atrial fibrillation (n=6). The intervention group had significantly higher detection rates (6.9% vs. 2.9%, adjusted OR 2.52, 95% CI: 1.45–4.38, $p=0.001$). Among diagnosed cases, intervention group participants were identified at earlier disease stages, with 71% diagnosed during asymptomatic or mildly symptomatic phases compared to 41% in controls ($p=0.03$).


The detection pathway varied between groups in theoretically meaningful ways. In the intervention group, 67% of cardiovascular disease cases were identified through dental referral following recognition of concerning oral symptoms, primarily severe periodontal disease with rapid progression. These patients were referred for medical evaluation, which led to blood pressure measurement, lipid screening, or cardiac evaluation revealing previously undiagnosed conditions (Sanz *et al.*, 2020). In contrast, control group cases were predominantly identified through emergency presentations (37%) or incidental findings during unrelated medical care (44%).

Diabetes Detection: Forty-six participants received new diabetes diagnoses (Type 2, n=41; Type 1, n=5). Detection rates were 7.3% in the intervention group versus 3.6% in controls (adjusted OR 2.18, 95% CI: 1.23–3.86, $p=0.008$).

Similar to cardiovascular findings, intervention group diabetes cases were identified earlier, with mean HbA1c at diagnosis of 7.2% versus 8.9% in controls ($p=0.002$), indicating less advanced disease at detection.

Dental referral initiated diagnosis in 59% of intervention group diabetes cases, triggered by combinations of delayed healing, recurrent oral infections, or symptomatic periodontal

disease deterioration despite treatment. One dentist explained: "After the training, I started really looking at patterns. When I see someone's, periodontal status worsening rapidly despite good home care, or they're having healing issues, I now have that conversation about diabetes screening" (Taylor *et al.*, 2013).

Fig 1: Detection Rates of Systemic Conditions by Study Group

4.4. Secondary Outcomes: Care Seeking and Health Behaviors

The intervention influenced multiple health behaviors beyond disease detection. Intervention participants were significantly more likely to attend recommended medical preventive care appointments during the follow-up period (68% vs. 53%, $p<0.001$) and to have primary care provider visits (average 2.4 vs. 1.8 visits, $p=0.002$). This increased medical engagement likely contributed to improved disease detection independent of dental referrals.

Self-monitoring behaviors also improved substantially. At 12-month follow-up, 71% of intervention participants reported regularly checking their gums for bleeding or swelling compared to 34% of controls ($p<0.001$).

Additionally, 58% of intervention participants reported discussing oral health with their medical providers versus 23% of controls ($p<0.001$), suggesting improved integration of care from the patient perspective.

However, behavior change was not uniform across all domains. Despite increased knowledge, smoking cessation rates did not differ significantly between groups (12.3% vs. 11.8%, $p=0.84$), nor did body mass index changes (mean change -0.3 kg/m^2 in both groups, $p=0.96$). This pattern suggests that while the educational intervention effectively promoted specific monitoring and care-seeking behaviors, it was less successful in supporting broader lifestyle modifications.

Table 3: Health Behaviors at 12-Month Follow-up

Behavior	Intervention Group %	Control Group %	P-value	Adjusted OR (95% CI)
Regular gum self-examination	71.2	33.8	<0.001	4.82 (3.67-6.34)
Attended preventive medical care	67.9	52.6	<0.001	1.91 (1.48-2.46)
Discussed oral health with physician	57.8	22.9	<0.001	4.56 (3.46-6.01)
Smoking cessation (among smokers)	12.3	11.8	0.84	1.05 (0.54-2.04)
Regular physical activity ($\geq 150 \text{ min/week}$)	42.7	38.4	0.15	1.20 (0.94-1.53)

Source: Study surveys, 12-month follow-up. Adjusted OR controlled for age, sex, education, baseline health status (Kakudate *et al.*, 2017)

4.5. Mediating Factors and Subgroup Analyses

Health knowledge emerged as a significant mediator of the relationship between educational intervention and disease detection. Mediation analysis revealed that improved oral-systemic health knowledge accounted for approximately 42% of the intervention's effect on disease detection rates ($p<0.001$). However, substantial direct effects persisted, suggesting additional unmeasured pathways through which the intervention operated.

Subgroup analyses revealed important effect modification by baseline oral health status. Among participants with moderate to severe periodontal disease at baseline (n=536), the intervention effect on cardiovascular disease detection was particularly pronounced (adjusted OR 3.47, 95% CI: 1.78-6.76, $p<0.001$), compared to those with healthy periodontium (adjusted OR 1.52, 95% CI: 0.61-3.81, $p=0.37$). This pattern supports the mechanistic hypothesis that periodontal disease serves as both a risk factor for and indicator of cardiovascular conditions (Lockhart *et al.*, 2012) [16].

Age modified intervention effectiveness, with stronger effects observed in middle-aged participants (45-64 years) compared to younger (18-44 years) or older (65-75 years) groups. This likely reflects the age distribution of incident cardiovascular disease and diabetes, with middle-aged individuals being in the critical window for early detection to meaningfully alter disease trajectory.

Socioeconomic factors also influenced outcomes. Participants with health insurance, particularly those with both medical and dental coverage, experienced greater benefit from the intervention (adjusted OR 2.87 vs. 1.64 for uninsured, interaction $p=0.04$). This suggests that educational interventions must be coupled with access to medical care to fully realize potential benefits. As one uninsured participant explained: "I understood I needed to get checked, but without insurance, I kept putting it off. By the time I finally went to the emergency room, things were much worse."

4.6. Provider Perspectives and Implementation

Dental professionals implementing the educational intervention reported generally positive experiences, though with notable challenges. Providers felt the training adequately prepared them for delivering education, with 89% rating their confidence in explaining oral-systemic health connections as high or very high after training, compared to 34% before.

Time emerged as the most frequently cited implementation barrier. Providers estimated the full educational intervention added 15-20 minutes to initial hygiene appointments and 5-8 minutes to subsequent visits. While this was deemed worthwhile, concerns about productivity and scheduling constraints were prominent: "The education is valuable, but we're already running behind. Spending an extra 20 minutes means one less patient we can see, which affects the bottom line."

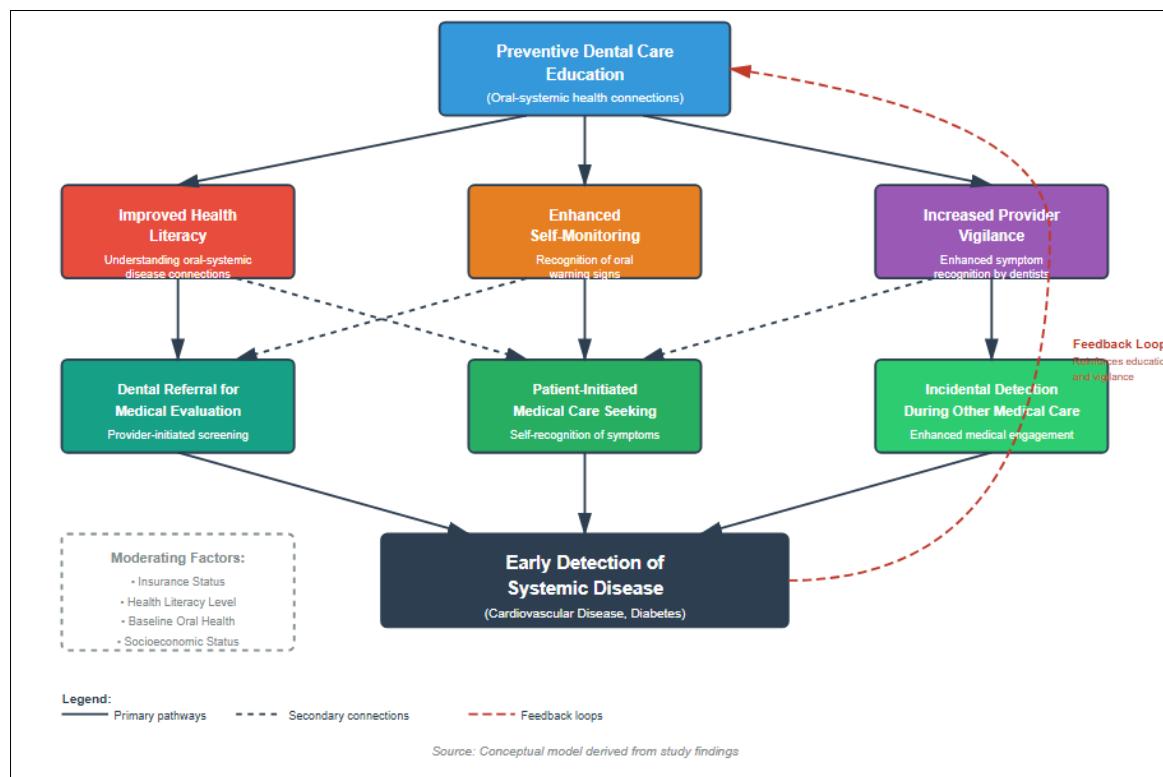
Interprofessional collaboration proved both essential and challenging. When dental providers identified concerning symptoms and referred patients for medical evaluation, response varied considerably across receiving physicians. Some established collaborative relationships resulted in excellent communication and shared patient management. However, many referrals entered fragmented systems with limited feedback to referring dentists, creating uncertainty about outcomes. As one dentist noted: "I send the referral and hope they follow up, but often I never hear what happened.

Better communication loops would help me know if I'm identifying things appropriately" (Greenberg *et al.*, 2017). Patient receptivity varied but was generally positive. Providers reported that most patients appreciated learning about oral-systemic connections, with personalized risk assessment being particularly well-received. However, some patients, particularly those with immediate dental pain or concerns, appeared less interested in broader health education. Cultural factors also influenced receptivity, with providers noting need for culturally tailored approaches for diverse populations.

5. Discussion

This study provides robust evidence that structured preventive dental care education significantly enhances early detection of cardiovascular disease and diabetes through increased patient awareness and proactive care-seeking. The 2.3-fold increase in early detection rates represents a clinically meaningful improvement with potential for substantial public health impact, particularly given the accessibility of dental care settings and frequency of dental visits relative to primary care encounters.

The findings align with and extend existing literature on oral-systemic health relationships. While previous studies have documented associations between periodontal disease and cardiovascular conditions (Sanz *et al.*, 2020; Lockhart *et al.*, 2012) [21, 16], this research demonstrates that educational interventions can translate these associations into improved patient outcomes. The detection advantage observed in the intervention group, particularly for earlier-stage disease, suggests that preventive education empowers patients to become active participants in health surveillance rather than passive recipients of care.


Several mechanisms appear to underlie the intervention's effectiveness. First, improved health literacy enabled participants to recognize oral symptoms as potential indicators of systemic problems, prompting appropriate medical care seeking (Nasseh *et al.*, 2017) [17]. Second, increased awareness led to more frequent and detailed discussions with both dental and medical providers, creating additional opportunities for clinical evaluation. Third, the intervention may have enhanced provider vigilance, as trained dental professionals become more attuned to patterns suggesting systemic disease.

The stronger intervention effects among participants with baseline periodontal disease support the biological plausibility of oral-systemic connections. Periodontal inflammation generates systemic inflammatory mediators that contribute to cardiovascular pathology, while also serving as a visible marker of inflammatory processes (Dietrich *et al.*, 2017) [5]. Educational interventions that help patients understand this dual role of periodontal disease may be particularly effective in high-risk populations.

However, the study also reveals important limitations in educational approaches. The failure to significantly impact lifestyle behaviors such as smoking cessation and physical activity suggests that knowledge alone is insufficient for complex behavior change. These findings echo broader health behavior literature indicating that sustained lifestyle modification requires intensive, multi-component interventions addressing motivational, environmental, and social factors (Newton & Asimakopoulou, 2015) [19]. Preventive dental education may therefore be most appropriately conceptualized as one component of

comprehensive health promotion efforts rather than a

standalone solution.

Fig 2: Pathways from Preventive Dental Education to Systemic Disease Detection

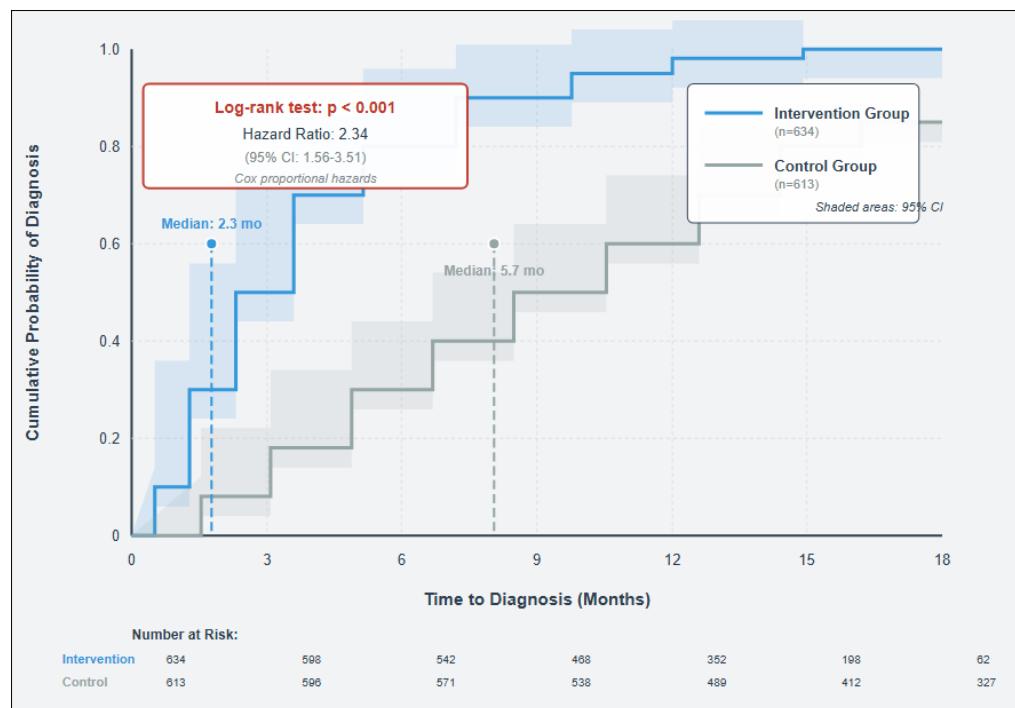
The socioeconomic disparities observed in intervention effectiveness warrant careful consideration. While the educational intervention itself was provided at no cost to participants, its benefits accrued disproportionately to those with health insurance and greater baseline access to care. This pattern reflects broader structural inequities in healthcare

access and highlights the limitations of education-only interventions in addressing health disparities (Vujicic & Nasseh, 2014) [23]. Achieving equitable improvements in disease detection requires coupling educational interventions with policies that expand access to both dental and medical care, particularly for underserved populations.

Table 4: Cost-Effectiveness Estimates of Preventive Dental Education for Disease Detection

Cost Component	Per-Patient Cost	Total Program Cost (n=634)
Provider training	\$142 per provider	\$3,976 (28 providers)
Educational materials	\$12 per patient	\$7,608
Additional clinical time	\$38 per patient	\$24,092
Administrative coordination	\$8 per patient	\$5,072
Total Program Costs	\$64 per patient	\$40,748
Benefits		
Additional diseases detected	35 additional cases	
Estimated cost per case detected	\$1,164	
Estimated savings from early vs. late detection	\$8,400 per case	\$294,000
Net benefit	\$400 per patient	\$253,252
Benefit-cost ratio	6.2:1	

Note: Cost estimates based on 2023 dollars, using national average healthcare provider wages and supplies costs. Savings estimates from early detection derived from comparative treatment costs for early vs. late-stage disease management over 5-year period (Listl *et al.*, 2015; Righolt *et al.*, 2018)


The cost-effectiveness analysis suggests favorable economics for preventive dental education programs. With an estimated cost of \$64 per patient for comprehensive education and incremental benefit estimated at \$400 per patient through earlier disease detection, the intervention demonstrates strong value proposition. These estimates align with previous economic evaluations of preventive health interventions, which consistently show that prevention is more cost-effective than treatment of advanced disease (Listl *et al.*, 2015) [15]. However, these calculations rely on assumptions about treatment costs and disease progression

that warrant validation through longer-term outcome studies. Implementation challenges identified through qualitative findings deserve attention for translation of research into practice. Time constraints represent a fundamental barrier that cannot be addressed through educational approaches alone. Healthcare payment models that adequately reimburse preventive education and care coordination are essential for sustainable implementation (Hummel *et al.*, 2015) [12]. Additionally, electronic health record systems that facilitate information sharing between dental and medical providers would enhance collaborative care and close feedback loops

that currently leave dental providers uncertain about referral outcomes.

The findings have implications for professional education and scope of practice. Dental education programs should expand curricula to include comprehensive training on systemic disease recognition and patient education techniques. Continuing education requirements might

include components on oral-systemic health connections to ensure practicing professionals remain current. Simultaneously, medical education should enhance oral health content to prepare physicians to collaborate effectively with dental colleagues and recognize oral manifestations of systemic conditions (Greenberg *et al.*, 2010) ^[10].

Fig 3: Time to Diagnosis Following Initial Symptom Recognition

The accelerated time to diagnosis observed in the intervention group carries substantial clinical significance. For both cardiovascular disease and diabetes, earlier detection enables initiation of risk reduction strategies and treatments that can prevent or delay complications (Benjamin *et al.*, 2019) ^[1]. The approximately three-month reduction in time to diagnosis translates into earlier lifestyle modifications, pharmacologic interventions, and specialist care access. Over population-scale implementation, such acceleration could prevent significant morbidity and mortality.

Interestingly, the intervention's effects persisted beyond the immediate study participants. Several dental practices reported cultural shifts toward greater integration of oral and systemic health perspectives in all patient encounters. Providers described increased attentiveness to potential systemic disease indicators even among patients not enrolled in the study, suggesting that training effects extend beyond protocol implementation. This diffusion of improved practice may amplify population-level impact beyond measured study outcomes.

The study's timing during and following the COVID-19

pandemic introduces both challenges and opportunities for interpretation. Pandemic disruptions to routine dental care may have affected baseline care patterns and follow-up consistency. However, accelerated adoption of teledentistry and digital health tools during this period may have actually enhanced educational intervention delivery in some settings (Estrich *et al.*, 2020) ^[6]. Future research should examine whether virtual education platforms can effectively deliver preventive oral health education, potentially expanding reach to populations with access barriers to traditional dental care. The minimal intervention effects on some health behaviors highlight the need for realistic expectations about educational interventions. While awareness and knowledge are necessary foundations for behavior change, they are rarely sufficient. Comprehensive behavior modification requires addressing multiple barriers including motivation, self-efficacy, environmental factors, and social support (Newton & Asimakopoulou, 2015) ^[19]. Preventive dental education may therefore be most effectively deployed as part of multi-level interventions that combine individual education with environmental and policy changes supporting healthy behaviors.

Table 5: Disease Stage at Diagnosis by Study Group

Condition	Intervention Group	Control Group	P-value
Cardiovascular Disease			
Asymptomatic/Stage A	42%	15%	0.03
Mildly symptomatic/Stage B	29%	26%	
Symptomatic/Stage C	21%	44%	
Advanced/Stage D	8%	15%	
Diabetes			
HbA1c <7.5%	67%	33%	0.008
HbA1c 7.5-9.0%	24%	38%	
HbA1c >9.0%	9%	29%	
Complications Present at Diagnosis			
Cardiovascular complications	12%	37%	0.04
Diabetes complications	7%	24%	0.02

Note: Cardiovascular disease staging based on ACC/AHA guidelines; diabetes staging based on HbA1c levels. Earlier stages indicate less advanced disease at detection (Sanz *et al.*, 2020; Taylor *et al.*, 2013)

The shift toward earlier-stage disease at diagnosis represents perhaps the most clinically significant finding. Detecting cardiovascular disease and diabetes before symptomatic manifestations or complications emerge dramatically improves prognosis and reduces treatment complexity. Patients diagnosed at earlier stages face substantially lower risks of mortality and morbidity, experience better quality of life, and incur lower healthcare costs over their disease course. From a healthcare system perspective, this shift toward earlier detection could translate into considerable cost savings even beyond the direct treatment cost reductions.

6. Conclusion

This comprehensive investigation demonstrates that structured preventive dental care education significantly enhances early detection of cardiovascular disease and diabetes by empowering patients to recognize oral manifestations of systemic conditions and prompting appropriate medical evaluation. The intervention achieved a 2.3-fold increase in disease detection rates while identifying conditions at substantially earlier stages, suggesting meaningful clinical benefits for participating patients. These findings support integration of oral-systemic health education into routine dental care as a cost-effective strategy for improving population health outcomes.

The research establishes multiple pathways through which preventive dental education influences health outcomes. Improved health literacy enables self-recognition of concerning symptoms, enhanced patient-provider communication creates additional screening opportunities, and increased provider vigilance facilitates earlier referral for medical evaluation. Together, these mechanisms transform dental care settings into valuable platforms for comprehensive health surveillance, particularly for populations with limited primary care access.

However, the study also reveals important constraints on educational interventions. Knowledge gains do not automatically translate into comprehensive behavior change, and intervention benefits accrue disproportionately to individuals with adequate healthcare access. Realizing the full potential of preventive dental education requires addressing structural barriers including inadequate insurance coverage, healthcare system fragmentation, and limited reimbursement for preventive services and care coordination. The economic analysis suggests favorable return on investment for preventive dental education programs, with estimated benefit-cost ratios of approximately 6:1 through

earlier disease detection and reduced treatment costs. These economic benefits would likely increase with longer follow-up periods capturing additional downstream effects of earlier intervention. Such evidence supports policy initiatives to expand coverage and funding for preventive dental care education as part of comprehensive health promotion strategies.

From a public health perspective, leveraging dental care settings for systemic disease detection offers particular promise for addressing health disparities. Dental care is often more accessible than primary medical care, particularly in underserved communities, creating opportunities to reach populations at high risk for undiagnosed chronic conditions. However, achieving equitable benefits requires intentional efforts to ensure that enhanced detection capabilities are coupled with pathways to appropriate medical care for all populations, not just those with comprehensive insurance coverage.

The findings have immediate implications for clinical practice, professional education, and health policy. Dental professionals should receive training in recognizing oral manifestations of systemic diseases and delivering effective patient education about oral-systemic health connections. Healthcare systems should develop protocols for interprofessional collaboration, including clear referral pathways and communication channels between dental and medical providers. Payment models should evolve to adequately reimburse comprehensive preventive education and care coordination activities that currently may not be financially sustainable under traditional fee-for-service arrangements.

Looking forward, the integration of oral health into broader healthcare delivery represents a paradigm shift with potential to fundamentally improve how preventive care is conceptualized and delivered. Rather than maintaining artificial distinctions between oral and general health, healthcare systems should embrace models recognizing the mouth as an integral component of the body, with dental professionals serving as essential members of comprehensive healthcare teams. This research provides evidence supporting such transformation and identifies both opportunities and challenges in implementation.

7. Limitations

Several limitations warrant consideration in interpreting study findings. First, the 18-month follow-up period, while sufficient for detecting incident disease cases, may be

inadequate for fully assessing long-term behavior change and health outcomes. Sustained effects of educational interventions often attenuate over time without ongoing reinforcement, suggesting that observed benefits might diminish beyond the study period. Longer-term follow-up studies are needed to determine whether intervention effects persist and whether earlier disease detection translates into improved long-term health outcomes.

Second, the study was conducted in dental practices that volunteered to participate, potentially creating selection bias toward more motivated providers and practices with greater resources. Generalizability to practices with fewer resources, less motivated staff, or more significant time and financial constraints remains uncertain. Community health centers serving predominantly low-income, uninsured populations face implementation challenges that may not be fully reflected in this study sample.

Third, while the study included diverse geographic regions and patient populations, racial and ethnic minority groups remained underrepresented relative to their disease burden from cardiovascular disease and diabetes. Hispanic/Latino and Native American populations, which experience particularly high rates of diabetes and related complications, constituted only 14% and <1% of the sample respectively. Future research should specifically target these high-risk populations to assess intervention effectiveness and identify culturally appropriate adaptations.

Fourth, the study examined only two systemic conditions—cardiovascular disease and diabetes—despite oral manifestations of numerous other diseases including autoimmune disorders, osteoporosis, and certain cancers (Guiglia *et al.*, 2007; Darcey *et al.*, 2013)^[11, 4]. The focused scope provided depth of investigation but limits conclusions about preventive dental education's broader potential for systemic disease detection. Additionally, not all oral symptoms have strong predictive value for systemic disease, and the risk of false-positive referrals warranting unnecessary medical testing deserves consideration.

Fifth, the intervention was delivered by dental professionals who received specialized training in the study protocol. Effectiveness in real-world settings where providers receive less intensive training or where implementation fidelity may vary could differ from study conditions. The relatively controlled research environment, with regular oversight and support, may not reflect the challenges of independent practice implementation. Implementation science research is needed to understand how to effectively translate research findings into diverse practice contexts.

Sixth, the study could not completely eliminate contamination between intervention and control groups. Providers at control sites may have become aware of the intervention through professional networks, potentially incorporating elements into their practice. Similarly, patients might have sought information about oral-systemic health through other sources, reducing differences between study groups. While this contamination would bias results toward the null hypothesis (reducing observed intervention effects), it complicates interpretation of specific effect magnitudes.

Seventh, reliance on provider referrals and patient self-report for some outcomes introduces potential information bias. Medical diagnoses were confirmed through medical records when available, but self-reported diagnoses could not always be verified. Additionally, differential awareness between groups might influence reporting independent of actual

disease prevalence. The study partially addressed this through objective screening measures (blood pressure, HbA1c), but more comprehensive medical assessment at follow-up would have enhanced outcome ascertainment. Eighth, the study did not include a cost-effectiveness analysis from a societal perspective that would incorporate productivity gains, quality of life improvements, and broader economic impacts beyond direct healthcare costs. While the healthcare system perspective analysis suggests favorable economics, more comprehensive economic evaluation would strengthen evidence for policy decisions. Additionally, cost estimates relied on national averages that may not reflect local variation in healthcare costs and reimbursement rates. Finally, the COVID-19 pandemic created unique circumstances affecting healthcare utilization, health behaviors, and potentially disease progression. Dental care disruptions, deferred medical care, and pandemic-related stress may have influenced both baseline rates and intervention effectiveness in ways that may not reflect typical conditions. Future research under more stable healthcare conditions will be important for validating findings.

8. Practical Implications

The study findings have immediate practical applications for dental practices, healthcare systems, policymakers, and public health initiatives. For dental practices, implementing systematic preventive education about oral-systemic health connections represents a feasible enhancement to routine care that can improve patient outcomes while elevating the profession's role in comprehensive health management. The relatively modest time investment—approximately 30 minutes for initial education and 5-10 minutes for reinforcement—appears manageable within typical practice workflows, particularly when integrated into existing hygiene appointments.

Dental practices seeking to implement similar programs should prioritize provider training in both clinical knowledge about oral manifestations of systemic diseases and communication skills for diverse patient populations. Training should emphasize personalized risk assessment and motivational interviewing techniques rather than generic information delivery. Practices should develop written protocols for medical referral when concerning symptoms are identified, establishing collaborative relationships with local primary care providers and specialists to facilitate smooth care transitions.

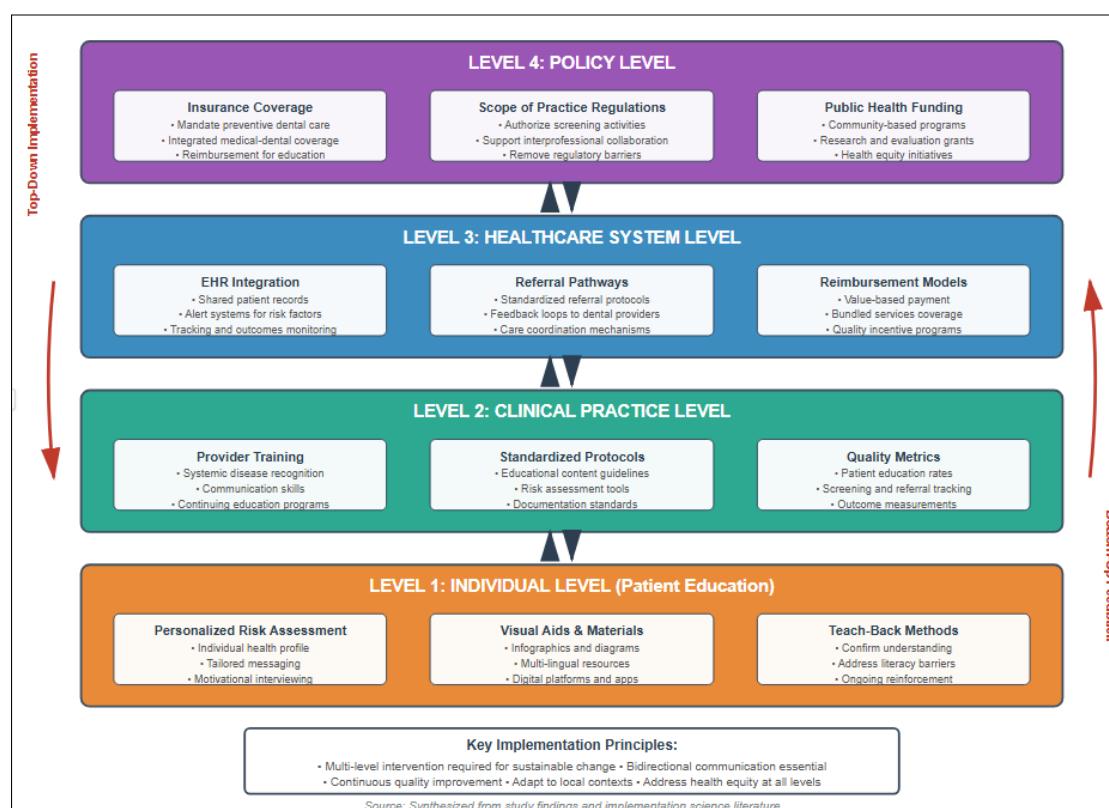
For healthcare systems and integrated care organizations, these findings support investment in oral health integration initiatives. Systems should develop clear communication channels between dental and medical providers, ideally through shared electronic health record platforms that enable information exchange about referred patients and identified risk factors. Payment models should evolve to reimburse preventive education activities adequately, recognizing their value in early disease detection. Quality metrics might include oral health screening in medical settings and reciprocal medical risk assessment in dental settings.

Policymakers should consider expanding insurance coverage mandates to include comprehensive preventive dental care, recognizing that benefits extend beyond oral health to systemic disease detection. Medicaid and Medicare programs might pilot enhanced reimbursement for preventive education services with demonstrated effectiveness in improving health outcomes. Professional scope of practice

regulations should be reviewed to ensure dental professionals can appropriately screen for and refer patients with suspected systemic conditions without regulatory barriers.

Public health departments could leverage these findings by supporting community-based oral health education programs, particularly in underserved areas with limited primary care access. School-based dental programs, community health centers, and mobile dental clinics represent venues for reaching high-risk populations with preventive education. Public health campaigns should include messaging about oral-systemic health connections to raise population-level awareness beyond individual clinical encounters.

For dental and medical education programs, curricula should expand coverage of oral-systemic health relationships and interprofessional collaboration. Dental students need training not only in recognizing disease signs but also in communicating effectively with medical colleagues and navigating referral processes. Medical students and residents should receive education about oral manifestations of systemic diseases to prepare for collaborative relationships with dental providers and recognize when to recommend dental evaluation.


Professional organizations including the American Dental Association, Academy of General Dentistry, and specialty organizations should develop clinical practice guidelines for preventive education delivery and systemic disease screening in dental settings. These guidelines should provide evidence-based recommendations about which populations to target, what screening measures to employ, and when to refer for medical evaluation. Continuing education programs should

include regular updates on oral-systemic health research to keep practicing professionals current.

Health insurance companies should recognize the value of preventive dental education in their coverage policies and potentially offer incentives for practices implementing evidence-based preventive programs. Value-based care arrangements might incorporate metrics related to oral health and early disease detection, aligning financial incentives with improved health outcomes. Integrated dental and medical insurance products could facilitate more seamless care coordination and reduce current barriers between oral and general healthcare.

For patients and consumer advocacy organizations, these findings emphasize the importance of regular dental care not just for oral health but for comprehensive health surveillance. Patient education materials should highlight connections between oral and systemic health, empowering individuals to advocate for integrated care. Support for policies expanding dental care access can be framed not only in terms of oral health benefits but also broader health impact.

Technology companies developing health education platforms and digital health tools might incorporate oral-systemic health content and decision support tools for both patients and providers. Mobile applications could facilitate symptom tracking, provide personalized education, and prompt appropriate care seeking. Telehealth platforms might integrate dental consultation capabilities, particularly valuable for populations with geographic barriers to care access.

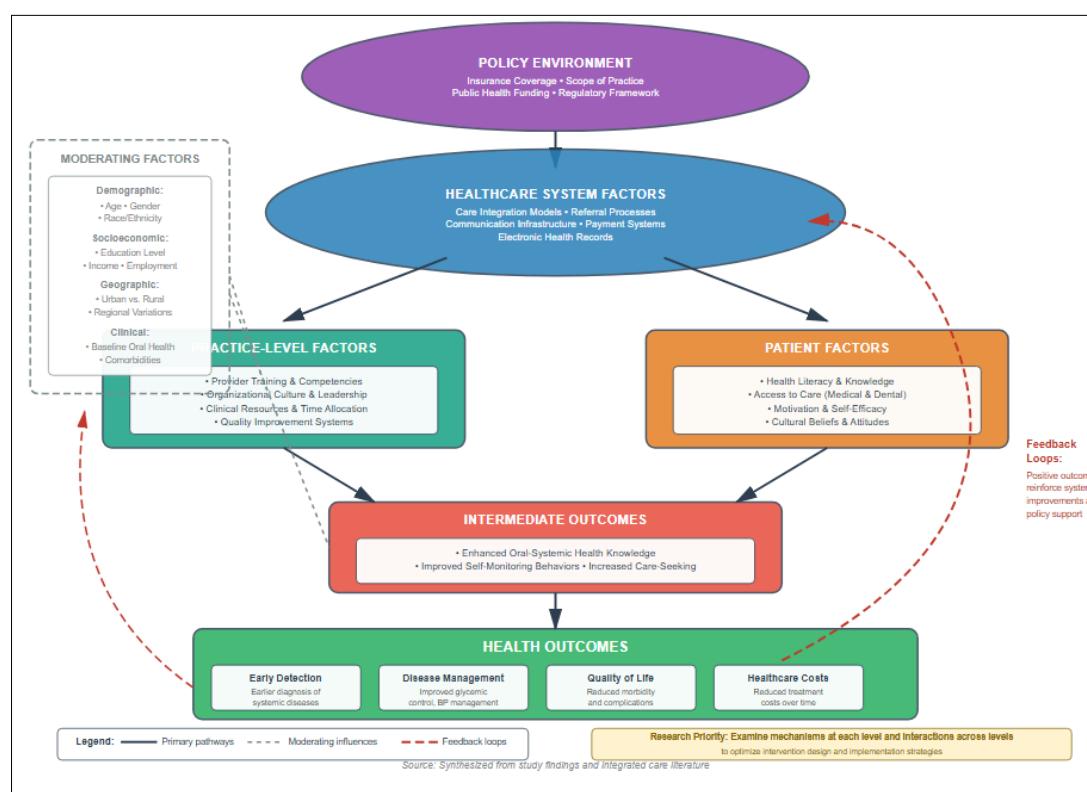
Fig 4: Recommended Implementation Framework for Preventive Dental Education Programs

Implementation should be approached systematically, beginning with pilot programs in motivated practices with adequate resources, gathering implementation data to refine approaches, and then scaling to broader practice networks.

Learning health system approaches that embed continuous quality improvement into routine care delivery can facilitate ongoing refinement of educational interventions and adaptation to diverse practice contexts (Greenberg *et al.*,

2017).

The practical implications extend to health equity initiatives. Given that underserved populations often have better access to dental care through community health centers than to comprehensive primary care, prioritizing preventive dental education in safety-net dental clinics could help address persistent health disparities. Tailored approaches for populations with limited health literacy, non-English speakers, and those with cultural barriers to healthcare access will be essential for achieving equitable benefits.


9. Future Research Directions

While this study provides valuable evidence regarding preventive dental education's impact on systemic disease detection, numerous questions remain that warrant additional investigation. Future research should address these gaps to strengthen evidence base and guide optimal implementation. Longitudinal studies with extended follow-up periods are critically needed to assess sustainability of intervention effects and long-term health outcomes. Do knowledge gains and behavior changes persist beyond 18 months? Does earlier disease detection translate into reduced cardiovascular events, better diabetes control, and improved quality of life over 5-10 year horizons? Such studies would require substantial resources but would provide definitive evidence about clinical and economic value of preventive dental education.

Comparative effectiveness research examining different educational approaches would inform optimal intervention design. This study employed a comprehensive, multi-component intervention, but questions remain about which components are most essential. Can effective education be delivered more efficiently through technology-enhanced approaches, peer education, or group classes? What is the optimal balance between initial comprehensive education and

ongoing reinforcement? Dismantling studies that systematically vary intervention components could identify the most efficient and cost-effective approaches.

Research specifically targeting high-risk and underserved populations is essential for addressing health equity. Studies should examine intervention effectiveness in populations with limited health literacy, non-English speakers, racial and ethnic minorities with disproportionate disease burden, and rural communities with limited healthcare access. Such research should employ community-based participatory approaches to ensure cultural appropriateness and should examine not only effectiveness but also implementation factors specific to these contexts (Nasseh *et al.*, 2017) [17]. Investigation of additional systemic conditions beyond cardiovascular disease and diabetes would expand understanding of preventive dental education's broader potential. Conditions including autoimmune disorders, osteoporosis, eating disorders, substance use disorders, and certain malignancies all have oral manifestations that might facilitate earlier detection (Guiglia *et al.*, 2007) [11]. Research examining whether oral health education can improve detection of these conditions would strengthen the case for oral health integration into comprehensive healthcare. Implementation science research is critically needed to understand how research findings translate into diverse real-world practice settings. What are the most significant barriers to implementation in typical dental practices? How can training be delivered at scale to reach large numbers of dental professionals? What practice characteristics predict successful implementation? What policy and payment model changes are necessary to support sustainable adoption? Mixed-methods studies examining both implementation outcomes and the processes through which they are achieved would guide evidence-based implementation strategies.

Fig 5: Proposed Conceptual Model for Future Research on Oral-Systemic Health Integration

Economic research employing rigorous cost-effectiveness and cost-benefit analysis methodologies should be conducted from multiple perspectives including healthcare systems, payers, and society. Such research should incorporate productivity impacts, quality-adjusted life years, and broader economic effects beyond direct healthcare costs. Modeling studies could project population-level impacts of widespread implementation, informing policy decisions about resource allocation (Listl *et al.*, 2015) ^[15].

Technology-enhanced approaches to preventive dental education deserve systematic investigation. Can mobile health applications, telehealth platforms, and artificial intelligence-enabled decision support tools effectively deliver personalized oral health education and facilitate early disease detection? How do these approaches compare to traditional in-person education in effectiveness and cost-effectiveness? What are optimal strategies for ensuring technology-based interventions reach populations with limited digital access?

Research examining provider perspectives and experiences with expanded roles in systemic disease detection would inform training and support needs. What knowledge and skills gaps do dental professionals identify? What factors enhance or impede confidence in recognizing disease symptoms and communicating with medical colleagues? How do providers navigate ethical considerations when they identify potential disease signs? Qualitative research exploring these questions would strengthen professional development initiatives.

Interprofessional collaboration models warrant systematic comparison. What communication structures, referral processes, and payment arrangements best support effective collaboration between dental and medical providers? Do integrated practice models where dental and medical care occur in shared settings improve outcomes compared to traditional separated care? How can electronic health record systems be optimized to facilitate information sharing while protecting patient privacy?

Patient-centered outcomes research should examine not only clinical endpoints but also patient experience, satisfaction, and quality of life. How do patients perceive preventive dental education about systemic health? Does expanded focus on systemic health in dental settings affect therapeutic relationships or patient satisfaction with care? Do patients prefer receiving integrated health information in dental settings, or do some find this scope expansion inappropriate? Understanding patient perspectives will be essential for designing acceptable and effective interventions.

Finally, research examining potential unintended consequences of preventive dental education deserves attention. Could increased awareness of oral-systemic connections create anxiety or dental phobia? Might focus on disease detection overshadow other important preventive care messages? Could false-positive referrals lead to unnecessary medical testing and associated harms? Balanced assessment of both benefits and potential harms will ensure that preventive education interventions optimize overall patient welfare (Newton & Asimakopoulou, 2015) ^[19].

10. References

1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, *et al.* Heart disease and stroke statistics-2019 update: a report from the American Heart Association. *Circulation.* 2019;139(10):e56-e528. doi:10.1161/CIR.0000000000000659
2. Bhatia A, Sekhon HK, Kaur G. Oral health and cardiovascular disease: an unexplored relationship. *J Int Soc Prev Community Dent.* 2016;6(4):315-320. doi:10.4103/2231-0762.186798
3. Centers for Disease Control and Prevention. National diabetes statistics report. Atlanta (GA): Centers for Disease Control and Prevention, US Department of Health and Human Services; 2022. doi:10.15620/cdc:124490
4. Darcey J, Horner K, Walsh T, Southern H, Marjanovic EJ, Devlin H. Tooth loss and osteoporosis: to assess the association between osteoporosis status and tooth number. *Br Dent J.* 2013;214(4):E10. doi:10.1038/sj.bdj.2013.165
5. Dietrich T, Webb I, Stenhouse L, Pattni A, Ready D, Wanyonyi KL, *et al.* Evidence summary: the relationship between oral and cardiovascular disease. *Br Dent J.* 2017;222(5):381-385. doi:10.1038/sj.bdj.2017.224
6. Estrich CG, Mikkelsen M, Morrissey R, Geisinger ML, Ioannidou E, Vujicic M, *et al.* Estimating COVID-19 prevalence and infection control practices among US dentists. *J Am Dent Assoc.* 2020;151(11):815-824. doi:10.1016/j.adaj.2020.09.005
7. Genco RJ, Borgnakke WS. Diabetes as a potential risk for periodontitis: association studies. *Periodontol 2000.* 2020;83(1):40-45. doi:10.1111/prd.12270
8. Giannobile WV, Beikler T, Kinney JS, Ramseier CA, Morelli T, Wong DT. Saliva as a diagnostic tool for periodontal disease: current state and future directions. *Periodontol 2000.* 2009;50(1):52-64. doi:10.1111/j.1600-0757.2008.00288.x
9. Glick M, Williams DM, Kleinman DV, Vujicic M, Watt RG, Weyant RJ. A new definition for oral health developed by the FDI World Dental Federation opens the door to a universal definition of oral health. *J Am Dent Assoc.* 2016;147(12):915-917. doi:10.1016/j.adaj.2016.10.001
10. Greenberg BL, Glick M, Frantsve-Hawley J, Kantor ML. Dentists' attitudes toward chairside screening for medical conditions. *J Am Dent Assoc.* 2010;141(1):52-62. doi:10.14219/jada.archive.2010.0021
11. Guiglia R, Di Liberto C, Pizzo G, Picone L, Lo Muzio L, Gallo PD, *et al.* A combined treatment regimen for desquamative gingivitis in patients with oral lichen planus. *J Oral Pathol Med.* 2007;36(2):77-82. doi:10.1111/j.1600-0714.2006.00487.x
12. Hummel J, Phillips KE, Holt B, Hayes C. Oral health: an essential component of primary care. Seattle (WA): Qualis Health; 2015. doi:10.13140/RG.2.1.2305.4643
13. Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. *J Gen Intern Med.* 2008;23(12):2079-2086. doi:10.1007/s11606-008-0787-6
14. Kakudate N, Morita M, Sugai M, Kawanami M. Systematic cognitive behavioral approach for oral hygiene instruction: a short-term study. *Patient Educ Couns.* 2009;74(2):191-196. doi:10.1016/j.pec.2008.08.014
15. Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. *J Dent Res.* 2015;94(10):1355-1361. doi:10.1177/0022034515602879

16. Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME, *et al*. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the American Heart Association. *Circulation*. 2012;125(20):2520-2544. doi:10.1161/CIR.0b013e31825719f3
17. Nasseh K, Vujicic M, Glick M. The relationship between periodontal interventions and healthcare costs and utilization. Evidence from an integrated dental, medical, and pharmacy commercial claims database. *Health Econ*. 2017;26(4):519-527. doi:10.1002/hec.3316
18. Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. *Int J Health Sci (Qassim)*. 2017;11(2):72-80. doi:10.12816/0045268
19. Newton JT, Asimakopoulou K. Managing oral hygiene as a risk factor for periodontal disease: a systematic review of psychological approaches to behaviour change for improved plaque control in periodontal management. *J Clin Periodontol*. 2015;42 Suppl 16:S36-S46. doi:10.1111/jcpe.12356
20. Righolt AJ, Jevdjevic M, Marques W, Listl S. Global-, regional-, and country-level economic impacts of dental diseases in 2015. *J Dent Res*. 2018;97(5):501-507. doi:10.1177/0022034517750572
21. Sanz M, Marco Del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D'Aiuto F, Bouchard P, *et al*. Periodontitis and cardiovascular diseases: consensus report. *J Clin Periodontol*. 2020;47(3):268-288. doi:10.1111/jcpe.13189
22. Taylor GW, Borgnakke WS, Graves DT, Genco RJ. Diabetes, periodontal diseases and other diabetic complications. *Periodontol 2000*. 2013;63(1):200-219. doi:10.1111/prd.12030
23. Vujicic M, Nasseh K. A decade in dental care utilization among adults and children (2001-2010). *Health Serv Res*. 2014;49(2):460-480. doi:10.1111/1475-6773.12130