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Abstract 

One of the challenges vulnerable populations in low-resource and high-density 

settings face includes the high probability of encountering an infectious disease 

outbreak because of the inadequate healthcare, overcrowding, and limited access to 

preventive services in such regions. Most traditional analytics in epidemiology do not 

address the challenges of modeling disease in these regions and thus fail to analyze 

the gaps in intervention and public health preparedness. This study focuses on the use 

of artificial intelligence (AI) based risk modeling systems to address infectious disease 

spread and public health security among these vulnerable populations. From 

epidemiology to public health, the response is built on machine learning (supervised, 

unsupervised, deep learning) algorithms on diverse datasets. These datasets include 

epidemiological incidences, population density, human mobility, health system, and 

socioeconomic and environmental factors. The identification of the disease’s 

transmission location, prediction of the disease, and vulnerability of the health system 

to the disease model the outbreaks, serving the gaps in public health preparedness. 

These benefits of AI-based risk modeling assist the decision-making in the optimal 

allocation of resources such as hospital capacity, the availability of rapid diagnostic 

tests, and the focus of vaccination. 
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Introduction 

Vulnerable populations particularly those residing in high-density and low-resource environments infectious diseases remain a 

leading cause of morbidity and mortality, posing persistent challenges to epidemiology and public health security (Aik et al., 

2020; Moodley et al., 2021). Urban slums, informal settlements, refugee camps, and remote rural communities are 

disproportionately affected by overcrowding, inadequate sanitation, fragile healthcare infrastructure, and limited access to 

preventive services such as immunization and health education. These structural and socioeconomic conditions interact with 

high population density to accelerate infectious disease transmission, intensifying outbreak impacts on individuals, households, 

and already strained health systems (Baker et al., 2022; Semenza et al., 2022). Recent epidemics including COVID-19, cholera, 

and Ebola virus disease have exposed critical gaps in global health equity and preparedness, underscoring how vulnerable 

populations experience faster disease spread, delayed detection, and suboptimal response outcomes (Nnaji et al., 2021; Kohnert, 

2021). 

Within these contexts, disease surveillance, risk modeling, and control are constrained by substantial structural and operational 

challenges. Traditional epidemiological systems rely heavily on manual case reporting, episodic data collection, and centralized 

laboratory confirmation, resulting in delayed outbreak detection and limited situational awareness (Ibrahim, 2020; Leitmeyer et 

al., 2020). These limitations are exacerbated by underreporting, weak diagnostic capacity, and fragmented health information  
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systems, which restrict the generation of timely, accurate, and 

spatially resolved insights into infectious disease 

transmission dynamics. Furthermore, high population 

mobility, informal settlement layouts, and fluid social 

networks complicate contact tracing and transmission 

pathway analysis (Chisholm et al., 2020; Nadimpalli et al., 

2020). Collectively, these constraints undermine the ability 

of public health authorities to anticipate outbreaks, prioritize 

high-risk populations, allocate resources efficiently, and 

implement targeted interventions, thereby heightening public 

health security risks. 

In response to these challenges, artificial intelligence (AI) has 

emerged as a powerful enabler of predictive analytics and 

advanced risk modeling in epidemiology. Machine learning 

and deep learning approaches can process large volumes of 

heterogeneous data including epidemiological case reports, 

human mobility patterns, environmental indicators, and 

health system capacity metrics—to generate real-time 

estimates of disease transmission and outbreak trajectories 

(Luca et al., 2021; Rahman et al., 2021). AI-driven models 

support the early identification of transmission hotspots, 

assessment of population-level vulnerability, and 

optimization of intervention strategies under conditions of 

uncertainty. By integrating traditional surveillance data with 

non-traditional sources such as social media signals, satellite 

imagery, and mobile phone derived mobility data, AI 

enhances situational awareness and enables proactive, 

evidence-based decision-making for infectious disease 

control and public health security (Agbehadji et al., 2020; 

Zeng et al., 2021). 

The persistence and disproportionate burden of infectious 

diseases among vulnerable populations can be theoretically 

explained through Social Determinants of Health Theory and 

Ecosocial Theory of Disease Distribution. Social 

Determinants of Health Theory posits that health outcomes 

are shaped by socioeconomic conditions such as income, 

housing quality, access to healthcare, education, and 

environmental exposure rather than biomedical factors alone. 

In high-density, low-resource settings, structural 

disadvantages like overcrowding, inadequate sanitation, 

informal employment, and weak health systems create 

conditions that amplify infectious disease transmission and 

limit effective prevention and response. 

Ecosocial Theory further extends this understanding by 

emphasizing how social, political, and ecological contexts 

become biologically embodied over time, influencing 

population-level susceptibility to disease. Vulnerable 

populations experience repeated exposure to pathogenic 

environments, environmental degradation, and chronic 

stressors that increase disease susceptibility and accelerate 

transmission dynamics. These theoretical perspectives 

explain why outbreaks such as COVID-19, Ebola, and 

cholera disproportionately affect marginalized communities 

and why conventional surveillance systems struggle to 

capture these complex, multi-layered risks in real time. 

From a systems perspective, Complex Adaptive Systems 

Theory provides a critical lens for understanding infectious 

disease spread in vulnerable populations. Infectious disease 

transmission emerges from non-linear interactions among 

individuals, mobility patterns, environmental conditions, and 

healthcare capacity. Traditional epidemiological models, 

which assume static relationships and homogeneous 

populations, are poorly equipped to capture such complexity. 

This theoretical limitation underscores the need for adaptive, 

data-driven approaches such as AI-based risk modeling that 

can dynamically learn from evolving system behaviors and 

feedback loops. 

The limitations of traditional epidemiological surveillance in 

vulnerable settings can be conceptualized using Information 

Asymmetry Theory and Surveillance Theory. Information 

Asymmetry Theory explains how decision-makers operate 

with incomplete or delayed information due to fragmented 

reporting systems, under-detection, and informal healthcare-

seeking behaviors common in low-resource environments. 

This asymmetry leads to delayed interventions, inefficient 

resource allocation, and reactive rather than preventive 

responses. 

Surveillance Theory further highlights how conventional 

public health surveillance relies on institutional reporting 

structures that often exclude informal settlements, 

undocumented populations, and community-level health 

events. As a result, disease intelligence systems 

systematically underrepresent vulnerable populations, 

creating blind spots in outbreak detection and risk 

assessment. These structural weaknesses reduce the 

effectiveness of disease control strategies and undermine 

public health security by allowing outbreaks to escalate 

unnoticed. 

The problem is compounded by Risk Society Theory, which 

posits that modern societies increasingly face systemic, 

transboundary risks such as pandemics that cannot be 

managed through traditional governance mechanisms alone. 

In the context of infectious diseases, risk is no longer 

localized or linear but rapidly propagates across social, 

economic, and geographic boundaries. Traditional 

epidemiological tools lack the predictive agility required to 

manage these evolving risks, particularly in populations 

where data scarcity and infrastructural fragility prevail. 

Despite growing interest in AI for epidemiology, a clear 

theoretical and empirical gap remains. Technology Diffusion 

Theory suggests that innovations often fail to reach 

populations with the greatest need due to infrastructural, 

institutional, and capacity constraints. Most AI-based 

infectious disease models have been developed and validated 

using data from high-income or well-instrumented settings, 

limiting their applicability to vulnerable populations 

characterized by data sparsity, informal mobility, and weak 

surveillance systems. 

Additionally, Equity Theory highlights that technological 

interventions may inadvertently reinforce existing disparities 

if vulnerable populations are underrepresented in training 

datasets or excluded from system design. Many AI models 

prioritize prediction accuracy over equity, fairness, and 

contextual relevance, resulting in biased risk estimates that 

fail to capture the true burden of disease in marginalized 

communities. 

From a methodological standpoint, existing studies often 

focus on technical performance metrics (e.g., accuracy, 

precision) without adequately linking model outputs to public 

health security outcomes, such as early warning capacity, 

surge preparedness, or equitable resource allocation. This 

creates a gap between AI innovation and actionable public 

health decision-making. Your study directly addresses this 

gap by centering vulnerable populations, integrating diverse 

risk determinants, and framing AI-based modeling as a public 

health security tool rather than a purely computational 

exercise. 

 



International Journal of Medical and All Body Health Research www.allmedicaljournal.com 

 
    243 | P a g e  

 

Methodology 

This study employed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

methodology to systematically evaluate literature on AI-

based risk modeling of infectious disease spread and its 

implications for public health security, particularly in 

vulnerable populations. A comprehensive search strategy 

was developed to identify relevant studies from major 

electronic databases, including PubMed, Scopus, Web of 

Science, IEEE Xplore, and Google Scholar, covering 

publications from 2010 to 2024. Keywords and controlled 

vocabulary included terms related to artificial intelligence, 

machine learning, infectious disease modeling, outbreak 

prediction, risk assessment, public health security, and 

vulnerable or high-risk populations. Only peer-reviewed 

articles, conference proceedings, and high-quality modeling 

studies published in English were included to ensure 

methodological rigor and relevance. 

All retrieved records were imported into reference 

management software, and duplicate entries were removed. 

Initial screening of titles and abstracts was performed 

independently by multiple reviewers based on predefined 

inclusion criteria, focusing on studies that applied AI 

methods to predict infectious disease dynamics, quantify 

outbreak risk, or assess impacts on populations with 

heightened vulnerability due to socioeconomic, 

demographic, or health-related factors. Studies were 

excluded if they were purely theoretical without empirical 

validation, unrelated to disease modeling, or focused solely 

on clinical diagnosis without population-level risk 

assessment. Full-text screening followed, with reasons for 

exclusion documented to maintain transparency and 

reproducibility. 

Data extraction utilized a standardized template to capture 

study characteristics, AI methodologies employed, input data 

sources, modeling frameworks, population context, 

validation methods, key findings, and implications for public 

health policy and intervention strategies. Quality assessment 

and risk of bias were conducted using adapted appraisal tools 

appropriate for computational, observational, and simulation-

based studies, emphasizing data representativeness, model 

robustness, predictive accuracy, and applicability to 

vulnerable populations. Due to heterogeneity in modeling 

approaches, data sources, and outcome measures, a narrative 

synthesis was performed rather than a quantitative meta-

analysis. This synthesis systematically compared AI 

techniques, risk assessment outputs, and public health 

implications, highlighting strengths, limitations, and research 

gaps. 

The data integration and modeling strategy in this study is 

grounded in Systems Theory and Data Fusion Theory. 

Systems Theory supports the integration of epidemiological, 

demographic, environmental, mobility, and health system 

indicators, recognizing infectious disease spread as the 

outcome of interacting subsystems rather than isolated 

variables. AI-based models operationalize this theory by 

learning non-linear relationships across heterogeneous 

datasets, allowing for holistic risk assessment. 

Data Fusion Theory further justifies the combination of 

structured data (case counts, hospital capacity) with 

unstructured or semi-structured data (mobility data, social 

signals, environmental indicators). By synthesizing multi-

source inputs, AI models reduce uncertainty, compensate for 

missing data, and improve predictive robustness—

particularly critical in settings with underreporting and 

delayed diagnostics. 

The application of supervised, unsupervised, and deep 

learning techniques aligns with Predictive Analytics Theory, 

which emphasizes forecasting future states based on 

historical and real-time data patterns. Supervised learning 

supports probabilistic risk classification, unsupervised 

learning enables anomaly detection and hotspot 

identification, and deep learning captures spatiotemporal 

dynamics consistent with Network Theory, where 

transmission occurs through interconnected social and 

mobility networks. 

Also, the emphasis on validation, uncertainty quantification, 

and scenario analysis reflects Decision Theory, ensuring that 

model outputs are interpretable, actionable, and suitable for 

policy use. This theoretical grounding ensures that AI-based 

risk modeling is not merely descriptive but directly supports 

evidence-based decision-making, equitable intervention 

planning, and strengthened public health security 

In order to support public health decision-making, the 

conceptual framework for AI-based risk modeling of 

infectious disease propagation in susceptible populations is 

based on the integration of sophisticated computational 

algorithms with a variety of epidemiological, demographic, 

and environmental data. In order to forecast the dynamics of 

disease transmission, identify high-risk locations, and 

evaluate the vulnerabilities of the health system, this 

framework places artificial intelligence (AI) and machine 

learning (ML) as key analytical tools. The framework offers 

an organized method for enhancing public health security in 

high-density and low-resource environments by fusing multi-

source data with predictive modeling (Oparah et al., 2022; 

Liu et al., 2022). 

When used to risk modeling, AI and machine learning 

techniques cover a broad range of methods intended to 

identify trends, categorize risk levels, and predict outbreak 

trajectories. Logistic regression, decision trees, random 

forests, and gradient boosting algorithms are examples of 

supervised learning techniques that are frequently used to 

forecast disease occurrence, categorize populations or 

regions according to risk level, and calculate outbreak 

probabilities using past epidemiological data. Unexpected 

patterns, new hotspots, or departures from baseline 

transmission trends can be found using unsupervised learning 

techniques including clustering, dimensionality reduction, 

and anomaly detection. While hybrid models that combine 

mechanistic epidemiological models with AI improve 

predictive accuracy by fusing theoretical knowledge of 

transmission processes with data-driven insights, deep 

learning architectures such as recurrent neural networks and 

long short-term memory models are especially good at 

capturing spatiotemporal patterns in disease dynamics. 

Integrating diverse data sources is a fundamental aspect of 

the architecture. Confirmed cases, laboratory test findings, 

and syndromic surveillance indicators are examples of 

epidemiological data that offer precise measurements of 

disease burden and epidemic status. The vulnerability and 

possible exposure of susceptible communities are informed 

by demographic data, such as population density, age 

distribution, household composition, and social contact 

networks. Temperature, precipitation, humidity, land use, 

and sanitary infrastructure are examples of environmental 

and climatic indicators that capture ecological and contextual 

elements that affect pathogen survival, vector dynamics, and 
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transmission risk. AI models can produce complex, context-

specific risk evaluations that take into account both biological 

and social factors of disease spread by integrating these data 

streams (Ikhalea et al., 2022; Chianumba et al., 2022). 

It is necessary to pay attention to certain structural and 

behavioral aspects that increase risk in order to comprehend 

the dynamics of disease transmission in vulnerable groups. 

Rapid illness spread and delayed discovery are caused by a 

number of factors, including high population density, poor 

housing, restricted access to healthcare, and mobility 

patterns. By simulating the effects of these variables, AI-

based risk models can pinpoint possible routes of 

transmission, groups of people or communities at high risk, 

and intervention sites. These models also make scenario 

analysis easier, allowing public health officials to assess how 

well focused treatments, resource allocation plans, and 

preventive measures work in various outbreak scenarios. 

The conceptual framework establishes a direct connection 

between public health security goals and AI-based risk 

modeling. AI models facilitate proactive planning, quick 

reaction, and strategic resource deployment by offering early 

warning of possible outbreaks, identifying high-risk locations 

for intervention, and evaluating vulnerabilities in healthcare 

infrastructure. Predictive insights are guaranteed to influence 

operational decision-making, biosecurity protocols, and 

emergency preparedness through integration with national 

and regional health security policies (Bardosh et al., 2020; 

Bedi et al., 2021). All things considered, this approach 

highlights the strategic importance of AI-driven risk 

modeling in improving situational awareness, reducing the 

spread of disease, and bolstering the ability of vulnerable 

people and health systems to withstand threats from 

infectious diseases. 

 

Data Sources and Indicators 

The development and use of artificial intelligence (AI) in 

infectious disease risk modeling depend heavily on accurate 

and thorough data. Multidimensional datasets are used by AI-

driven methods to forecast outbreak trajectories, characterize 

disease dynamics, and guide focused public health actions. 

While guaranteeing data quality, completeness, and 

timeliness, effective modeling incorporates epidemiological, 

demographic, health system, environmental, and 

socioeconomic indicators. 

The primary inputs for AI-based illness modeling include 

laboratory confirmations, syndromic surveillance, and 

epidemiological case data. Direct proof of disease occurrence 

and temporal trends is provided by case data, which includes 

reported incidences of infection, hospitalizations, and 

mortality. Syndromic surveillance provides early warning 

signs of potential outbreaks by capturing patterns of symptom 

presentation, frequently prior to formal diagnoses being 

established. By confirming suspected infections and allowing 

stratification by pathogen type, strain, or resistance profile, 

laboratory-confirmed cases significantly improve model 

accuracy. These diverse sources can be assimilated by AI 

algorithms, especially machine learning models, to detect 

aberrant illness patterns, predict case counts, and calculate 

the likelihood of transmission under various circumstances 

(Reddy et al., 2021; Hamilton et al., 2021). 

AI risk models are progressively including social contact 

networks, population density, and migration patterns all of 

which are important factors in the spread of disease. Rapid  

transmission is facilitated by high-density urban 

environments, and the spatial dissemination of infectious 

agents is influenced by population movements such as daily 

commuting, migration, and travel. Proxy indicators of human 

movement and contact patterns include social media 

interactions, mobile phone data, and travel logs. These data 

can be used by network-based modeling techniques to 

identify super-spreader nodes, simulate transmission paths, 

and analyze the possible effects of intervention strategies like 

targeted vaccination or social distancing. The predictive 

realism of AI-driven epidemic simulations is improved by 

incorporating such spatial and behavioral dynamics. 

For evaluating public health resilience and simulating the 

possible effects of epidemics on healthcare delivery, health 

system capacity indicators are crucial. Models of healthcare 

burden and system stress during epidemics are informed by 

metrics including hospital bed availability, intensive care unit 

(ICU) capacity, ventilator supply, and personnel levels. 

These indications can be incorporated into AI-based 

simulations to forecast resource shortages, optimize 

distribution, and facilitate scenario-based surge capacity 

planning. Incorporating health system factors guarantees that 

risk evaluations are not only epidemiological but also 

operationally relevant, directing emergency response 

planning and policy decisions (Anderson et al., 2020; 

Decouttere et al., 2021). 

Disease susceptibility and spread are greatly influenced by 

socioeconomic and environmental factors. While 

urbanization, sanitation, and housing conditions alter 

exposure risk, climate variables including temperature, 

humidity, and rainfall impact pathogen viability and vector 

dynamics. Both vulnerability and the efficacy of therapies are 

influenced by socioeconomic factors, such as income levels, 

educational attainment, and access to healthcare. In order to 

identify high-risk communities and prioritize interventions 

based on environmental and social determinants of health, AI 

models can integrate geographic and contextual datasets to 

capture these intricate interconnections. 

Important issues in AI-based risk modeling continue to 

include data timeliness, completeness, and quality. Bias can 

be introduced, model accuracy can be decreased, and 

actionable insights can be limited by incomplete case 

reporting, delayed laboratory confirmations, irregular coding 

standards, and missing demographic data. Data 

harmonization, imputation techniques for missing values, 

validation against several sources, and the usage of real-time 

or almost real-time reporting systems are some strategies to 

lessen these problems. The reliability and repeatability of 

modeling results are further improved by transparent 

documentation of data provenance and quality evaluations. 

The integration of a variety of high-quality datasets, 

including epidemiological, demographic, health system, 

environmental, and socioeconomic indicators, is essential for 

AI-driven infectious disease risk modeling. Early epidemic 

detection, accurate transmission dynamics prediction, and 

evidence-based public health decision-making are all made 

possible by the efficient use of this data. For trustworthy 

modeling and the development of interventions that protect 

vulnerable populations and improve overall public health 

security, it is crucial to ensure data completeness, accuracy, 

and timeliness while capturing the multifactorial 

determinants of disease spread (Tang et al., 2020; Sartorius 

et al., 2021). 
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AI-Based Predictive Modeling Techniques 

Predictive modeling techniques based on artificial 

intelligence (AI) have emerged as crucial tools for 

comprehending, predicting, and reducing the transmission of 

infectious diseases, especially in vulnerable populations with 

limited healthcare resources. These methods evaluate 

heterogeneous data streams, find patterns, predict outbreak 

trajectories, and guide public health responses by utilizing 

machine learning (ML) and deep learning algorithms. AI-

driven models offer a more proactive and accurate approach 

to disease surveillance than conventional epidemiological 

approaches by converting vast amounts of epidemiological, 

demographic, mobility, and environmental data into 

actionable insights (Chianumba et al., 2021; Chakilam, 

2022). 

One of the most popular AI methods for risk assessment and 

epidemic forecasting is supervised learning. In supervised 

learning, predictive variables like population density, 

movement patterns, and environmental conditions are 

matched with known outcomes like verified disease cases or 

epidemic occurrences in labeled datasets. The probability of 

infection or outbreak breakout can then be used to categorize 

areas, communities, or individuals using algorithms like 

logistic regression, decision trees, random forests, support 

vector machines, and gradient boosting models. By 

identifying high-risk locations early on, these models help 

public health authorities prioritize resource allocation, carry 

out focused interventions, and predict healthcare demand. 

Additionally, as fresh data becomes available, supervised 

learning enables ongoing model performance enhancement, 

increasing the accuracy of outbreak prediction over time. 

Unsupervised learning methods are especially helpful for 

identifying clusters and detecting anomalies. Unlike 

supervised approaches, unsupervised models find inherent 

patterns or structures in the data rather than depending on 

labeled outcome data. In high-density populations, clustering 

techniques like k-means, hierarchical clustering, and density-

based spatial clustering might identify emergent outbreak 

clusters or hitherto unknown hotspots of disease 

transmission. According to Karadayi et al. (2020) and 

Mehrdad et al. (2021), anomaly detection techniques can 

detect anomalous deviations from predicted epidemiological 

trends, indicating possible outbreaks or emergent dangers 

that may not yet have been reported. In situations like low-

resource health systems or informal settlements where formal 

reporting is inconsistent, partial, or delayed, these qualities 

are essential for early warning. 

Deep learning expands AI models' predictive power to 

include intricate network-based and spatiotemporal studies. 

For capturing temporal trends, spatial dependencies, and non-

linear interactions in epidemiology and mobility data, 

recurrent neural networks (RNNs), long short-term memory 

(LSTM) models, and convolutional neural networks (CNNs) 

are especially well-suited. These models may simulate the 

effects of interventions, predict disease trajectories over time 

and geography, and pinpoint important nodes in transmission 

networks, such as highly connected people or busy areas. 

Deep learning algorithms enable proactive decision-making 

in high-risk urban and rural environments by providing high-

resolution forecasts of outbreak dynamics through the use of 

multi-dimensional inputs. 

Hybrid models improve predicted accuracy and 

interpretability by fusing AI with mechanistic epidemiology 

techniques. Theoretical knowledge of disease transmission 

processes and population interactions is included into 

mechanistic models, such as the susceptible-infected-

recovered (SIR) or susceptible-exposed-infected-recovered 

(SEIR) frameworks. Data-driven parameter estimate, 

dynamic modification to real-time inputs, and enhanced 

adaptability to changing situations are all made possible by 

integrating these models with AI algorithms. By utilizing AI's 

analytical capabilities to manage massive, diverse 

information, hybrid models can close the gap between 

theoretical epidemiology and empirical data and produce 

forecasts that are easy to understand. 

Strict model validation, calibration, and uncertainty 

quantification are necessary for the successful application of 

AI-based prediction models. In order to evaluate accuracy 

and generalizability, validation entails testing model 

predictions against independent datasets or observed 

outbreak results. Model parameters, such as population 

demographics, healthcare capacity, and migration patterns, 

are calibrated to represent local epidemiological conditions. 

For policymakers and public health professionals to 

understand the accuracy and limitations of forecasts, 

uncertainty quantification which includes confidence 

intervals, sensitivity assessments, and probabilistic 

forecasting is crucial (Faes and Moens, 2020; Murad et al., 

2021). By taking care of these issues, AI models are 

guaranteed to be not only technically sound but also practical 

and morally upright. 

Deep learning, supervised and unsupervised learning, and 

hybrid mechanistic-AI models are examples of AI-based 

predictive modeling techniques that offer strong instruments 

for predicting infectious disease outbreaks, evaluating risk, 

and guiding public health actions. These methods improve 

early warning capacities, maximize resource allocation, and 

strengthen the resilience of vulnerable populations and health 

systems in the face of changing infectious disease threats 

when paired with thorough validation and uncertainty 

assessment. 

 

Applications in Vulnerable Populations 

Infectious disease risk modeling based on artificial 

intelligence (AI) has shown great promise for improving 

public health security, especially for vulnerable groups. 

During infectious disease epidemics, vulnerable populations 

typically characterized by socioeconomic deprivation, 

limited access to healthcare, high population density, or 

underlying health conditions face disproportionate risks (Shi 

and Stevens, 2021; Siegel and Mallow, 2021). By using AI in 

these situations, health inequities can be decreased and 

resilience can be increased in both urban and resource-

constrained settings through more accurate risk area 

detection, anticipatory planning, and customized intervention 

tactics. 

One fundamental use of AI-driven modeling is risk mapping 

in informal communities and high-density urban settlements. 

Inadequate sanitation, a lack of healthcare facilities, and 

excessive mobility are common characteristics of slums, 

densely populated urban districts, and informal settlements, 

all of which promote the quick spread of infectious diseases. 

In order to create comprehensive risk maps, AI algorithms in 

particular, spatial machine learning and geographic 

prediction models can incorporate epidemiology data, 

population density measures, mobility patterns, and 

environmental elements. These maps help authorities 

prioritize surveillance and intervention activities by 
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identifying communities or neighborhoods that are more 

vulnerable to the spread of diseases. AI techniques offer 

actionable insights that go beyond conventional aggregate-

level epidemiological reporting by showing risk gradients at 

a fine-grained spatial level. 

Another crucial application in vulnerable populations is the 

use of predictive analytics for surge planning and the 

distribution of healthcare resources. High-risk community 

outbreaks frequently put a strain on the local healthcare 

system, resulting in a shortage of hospital beds, intensive care 

units (ICUs), medical staff, and necessary supplies. AI-based 

models that take into account disease transmission rates, 

population demographics, comorbidities, and healthcare 

consumption trends can predict the demand for healthcare 

resources under various epidemic scenarios. Decision-

makers can use these prediction outputs to create temporary 

care facilities, deploy mobile clinics, and allocate resources 

as efficiently as possible. AI helps lower morbidity and death 

in populations with low baseline healthcare capability by 

facilitating proactive rather than reactive planning 

(Paramasivan, 2020; Chianumba et al., 2021). 

Another crucial use of AI is the identification of hotspots for 

focused interventions and immunization programs. Spatially 

diverse risk profiles, where transmission is concentrated in 

particular towns, marketplaces, schools, or transportation 

centers, may be experienced by vulnerable people. To 

identify new hotspots, AI systems can examine 

environmental factors, transportation networks, and 

epidemiological patterns. With the use of these data, public 

health officials are able to put specific policies into place, 

such as vaccination campaigns that are given priority, 

increased community involvement, and localized non-

pharmaceutical interventions like temporary travel 

restrictions or cleanliness promotion. Targeted strategies 

increase productivity, minimize resource waste, and optimize 

protective effects on the most vulnerable populations. 

Another important advantage of AI-driven monitoring is its 

ability to support biosecurity and containment tactics in 

environments with limited resources. Numerous vulnerable 

people live in areas with inadequate emergency response 

infrastructure, unreliable disease reporting, or limited 

laboratory capability. By including alternative data sources, 

such as syndromic surveillance, mobile phone mobility data, 

environmental monitoring, and community-reported health 

signals, AI-based models can make up for these constraints. 

AI makes it possible to detect epidemics in a timely manner, 

promotes coordinated containment actions, and, when 

practical, assists the development of quarantine or isolation 

tactics through predictive risk mapping and early warning 

systems. Crucially, these technologies promote community 

resilience to infectious disease threats by improving 

situational awareness even in areas with limited resources 

(Kakkar et al., 2020). 

Risk mapping, predictive resource planning, hotspot 

identification, and biosecurity support are examples of AI 

applications in vulnerable populations that collectively 

improve the ability to anticipate, mitigate, and respond to 

infectious disease risks. AI makes it possible to precisely 

target interventions, allocate limited healthcare resources 

effectively, and implement proactive containment methods 

by combining spatial, epidemiological, and socioeconomic 

data. These skills are especially important in low-resource 

environments, informal groups, and high-density urban areas 

where conventional public health methods might not be 

enough. Through these applications, AI-driven risk modeling 

advances national and international health security by 

strengthening protection of vulnerable populations, 

improving outbreak preparedness and response, and 

promoting equitable public health outcomes (Zahid and 

Shankar, 2020; Ejedegba, 2022). 

 

Implications for Public Health Security 

AI-based risk modeling of infectious disease transmission has 

significant implications for public health security, especially 

when it comes to safeguarding vulnerable groups in high-

density, low-resource environments. The ability of a country 

to prevent, identify, and successfully address biological 

threats whether they are intentional, unintentional, or 

naturally occurring is referred to as public health security 

(O'Sullivan and Ramsay, 2020; Lentzos et al., 2020). 

Predictive AI model adoption improves health systems' 

strategic ability to foresee outbreaks, distribute resources 

effectively, and carry out prompt interventions, ultimately 

reducing socioeconomic and health effects. 

Early warning and proactive reaction capabilities are two 

important contributions of AI-based models. Conventional 

surveillance methods frequently depend on delayed 

reporting, which makes it more difficult for health officials to 

take action before the spread of disease worsens. AI models, 

on the other hand, are capable of real-time analysis of multi-

source data, such as demographic indicators, migration 

patterns, environmental elements, and epidemiological case 

reports, in order to spot anomalous trends or departures from 

typical patterns. Early detection of possible outbreaks is made 

possible by this capability, which enables quick reaction team 

mobilization, medical supply prepositioning, and 

containment measures to be put in place before widespread 

transmission takes place (Martins et al., 2020; Chen et al., 

2022). Early warning reduces morbidity, mortality, and 

disruption to health systems and society by enabling 

proactive rather than reactive responses. 

Prioritizing treatments to safeguard high-risk populations is 

also supported by AI-driven risk modeling. Predictive models 

direct the targeted distribution of resources like vaccines, 

diagnostic tests, and treatments by identifying geographic 

hotspots, demographic groups, or particular areas at elevated 

risk. Interventions can be concentrated in regions with the 

highest risk of transmission in high-density urban settlements 

or informal groups, increasing the effectiveness and equality 

of public health initiatives. In a similar vein, models can 

guide non-pharmaceutical interventions like movement 

restrictions, quarantines, or health education campaigns, 

guaranteeing that high-risk populations receive prompt 

protection while reducing needless disturbance in lower-risk 

areas (Imai et al., 2020; Regmi and Lwin, 2021). 

Preparation and reaction are further strengthened by 

integrating AI-based surveillance with emergency planning 

and national health security frameworks. To improve 

situational awareness and coordination, predictive insights 

can be integrated into current decision-making procedures, 

emergency operation centers, and health information 

systems. Public health authorities may guarantee a unified, 

multi-sectoral response to new dangers by connecting AI 

outputs to strategic resource allocation, hospital surge 

planning, and interagency communication. Policymakers can 

assess possible actions under various epidemic scenarios and 

optimize response methods in line with national security 

goals thanks to AI models' help for scenario simulations and 
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contingency planning. 

Beyond domestic uses, AI-based risk modeling makes a 

substantial contribution to pandemic preparedness and global 

health security. Outbreaks in susceptible populations can 

swiftly spread to other areas or nations because infectious 

illnesses do not respect national boundaries. International 

cooperation, surveillance, and coordinated containment 

strategies are informed by early insights into possible cross-

border spread provided by AI models that integrate mobility 

and environmental data. AI helps international health 

authorities, including the World Health Organization, 

prioritize resources, send out early alarms, and direct 

initiatives in areas at risk by improving predictive 

power.Additionally, AI-based models' scalability and 

adaptability enable the quick integration of new pathogens or 

emerging epidemiological trends, strengthening the global 

health infrastructure's ability to effectively respond to 

pandemics in the future (Abir et al., 2020; Nguyen et al., 

2021). 

By facilitating early warning, focused interventions, 

integration with emergency planning, and contributions to 

global preparedness, AI-based predictive modeling greatly 

enhances public health security. AI improves health systems' 

capacity to safeguard vulnerable populations, maximize 

resources, and preserve social stability in the face of 

infectious disease risks by offering timely, data-driven 

insights into disease dynamics (Majeed and Hwang, 2021; 

Chianumba et al., 2021). Its adoption strengthens national 

and international capacities for outbreak prevention, 

mitigation, and resilient response, marking a significant 

advancement in contemporary epidemiology. 

 

Challenges and Limitations 

Although AI-driven infectious disease risk modeling has the 

potential to revolutionize public health, its application is 

fraught with difficulties and constraints, especially when it 

comes to vulnerable groups. To guarantee dependable, fair, 

and useful results, these limitations which span the technical, 

operational, ethical, and sociopolitical domains must be 

addressed. Designing reliable surveillance systems and 

appropriately interpreting model outputs require an 

understanding of these constraints. 

Data shortages, reporting delays, and under-detection in 

vulnerable communities are some of the main issues. The 

lack of access to healthcare and disease surveillance facilities 

in rural areas, informal settlements, and marginalized groups 

sometimes leads to inconsistent or inadequate 

epidemiological data. Underestimating the incidence of 

disease might result from inconsistent syndromic 

surveillance, delayed laboratory confirmation, and 

fragmented case reporting. According to Bates et al. (2020) 

and Prosperi et al. (2020), AI models trained on such 

insufficient datasets may provide skewed risk projections, 

decreasing their predictive reliability and perhaps misguiding 

interventions. Furthermore, real-time modeling which is 

essential for early epidemic identification and prompt 

resource allocation is hampered by delayed data entry and 

asynchronous reporting. Addressing these gaps requires 

investment in data infrastructure, standardization of reporting 

protocols, and incorporation of alternative data streams such 

as mobile health reporting, environmental monitoring, and 

community-based surveillance. 

AI applications for public health are further constrained by 

representativeness and algorithmic bias. To identify disease 

trends and forecast the dynamics of transmission, machine 

learning models use both historical and modern datasets. The 

health dynamics of well-represented communities may be 

disproportionately reflected in model outputs if specific 

populations or geographic areas are overrepresented while 

vulnerable groups are underrepresented. By misallocating 

resources and underestimating risk in underrepresented 

populations, this can worsen health inequities. Algorithmic 

decisions that unintentionally favor some results over others, 

such as feature selection, covariate weighting, and model 

architecture, can also result in bias (Chakraborty et al., 2021; 

Mehrabi et al., 2021). Continuous evaluation of model 

fairness, incorporation of diverse and representative datasets, 

and application of bias mitigation techniques are therefore 

critical to ensure equity in AI-driven public health 

interventions. 

The practical usefulness of AI-based risk modeling is further 

limited by resource limitations for model implementation and 

interpretation. Strong IT infrastructure, specialized 

knowledge, and substantial processing power are frequently 

needed for high-performance AI models. The deployment 

and upkeep of AI systems may be hampered by low-resource 

health systems' inability to utilize these capabilities. 

Additionally, competent staff who can convert probabilistic 

forecasts into practical public health decisions are needed to 

comprehend complex model results. Models run the risk of 

being misused, misunderstood, or abandoned in the absence 

of sufficient technological and human resources, 

compromising their intended influence on public health. To 

close this gap and enable the long-term incorporation of AI 

technologies into standard surveillance workflows, capacity 

building, training initiatives, and user-friendly platforms are 

crucial (Hungbo et al., 2020; Forkuo et al., 2022). 

One major issue in data collection and modeling is ethical and 

privacy considerations. For AI models to produce precise 

forecasts, they frequently need access to private health, 

mobility, and demographic data. Data misuse, confidentiality 

violations, and unintentional re-identification can have major 

social and legal repercussions among vulnerable populations. 

System design must take ethical factors into account, such as 

informed permission, data minimization, purpose limitation, 

and equitable benefit distribution (Pratt et al., 2020; Reed-

Berendt et al., 2022). If these issues are not resolved, 

community involvement in surveillance activities may 

decline, trust in public health authorities may be damaged, 

and the availability of high-quality data may be restricted, all 

of which might further undermine the efficacy of the model. 

Deploying AI in an ethical manner requires transparent 

governance structures, privacy-preserving computational 

methods, and community involvement. 

Data scarcity and under-detection in susceptible populations, 

algorithmic bias, resource limitations, and ethical and privacy 

concerns are just a few of the many obstacles that AI-based 

infectious disease risk modeling must overcome. These 

restrictions have an impact on model accuracy, equity, and 

practical applicability, underscoring the necessity of 

meticulous system design, representative and superior data 

collecting, capacity building, and strong governance 

frameworks. In order to ensure that AI technologies not only 

improve epidemic preparedness and predictive skills but also 

contribute to fair and morally responsible public health 

outcomes, especially for communities most at risk, it is 

imperative that these concerns be addressed. 
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Future Directions and Research Opportunities 

Predictive modeling based on artificial intelligence has 

already shown significant promise in supporting public health 

security and infectious disease surveillance. The efficacy, 

equity, and sustainability of AI-driven techniques, however, 

can be further improved by a number of future avenues and 

research opportunities as the field develops (Yigitcanlar et 

al., 2021; Palomares et al., 2021). Enhancing model 

transparency, incorporating dynamic data streams, 

encouraging cross-sectoral cooperation, and bolstering the 

body of evidence for operational and policy adoption are the 

main goals of these directions. 

Improving model interpretability and developing explainable 

AI (XAI) techniques are important areas for future research. 

Many AI and machine learning models, especially deep 

learning architectures, operate as "black boxes," making 

predictions without providing a clear explanation of the 

underlying principles. Adoption and implementation in 

operational contexts may be hampered by this lack of 

openness, which can erode confidence among public health 

professionals and legislators. The goal of XAI research is to 

produce understandable results that show which input 

characteristics influence predictions and how risk 

assessments are produced. Explainable models can support 

ethical accountability in high-stakes public health initiatives, 

enhance stakeholder confidence, and enable informed 

decision-making by making AI outputs more comprehensible 

(McDermid et al., 2021; Kokala, 2022). Improving 

interpretability is especially crucial for vulnerable 

populations, because interventions need to be reasonable, 

equal, and sensitive to local circumstances. 

Using real-time mobility and environmental data for adaptive 

forecasting is another interesting approach. The 

responsiveness of predictive models is limited by the fact that 

traditional epidemiological datasets frequently lag behind the 

present state of disease transmission. Near-real-time insights 

on population movement, social interactions, and ecological 

circumstances that impact disease spread can be obtained by 

integrating dynamic data sources, such as anonymized 

mobile phone location data, transportation network usage, 

and satellite-based environmental indicators. Emergent 

transmission hotspots may be identified, outbreak escalation 

can be predicted, and appropriate actions can be informed by 

adaptive forecasting models that continuously update 

predictions based on incoming data. Research is required to 

assure resilience across various geographic and 

socioeconomic situations, address privacy and ethical 

problems, and maximize the integration of these disparate 

data streams. 

AI's cross-sectoral integration with social services, public 

health, and urban planning offers a calculated chance to 

enhance disease prevention in populations at risk. In addition 

to biological considerations, social determinants including 

housing density, sanitation, healthcare access, and 

community mobility patterns all have an impact on the 

dynamics of infectious diseases. AI models that integrate data 

from social services, education, transportation, and urban 

planning can offer a more comprehensive understanding of 

risk, enabling authorities to create multifaceted treatments 

that address both structural and direct causes of illness. In 

order to improve overall resilience and enable proactive, 

evidence-based interventions that are customized to local 

vulnerabilities, collaborative frameworks bridging public 

health, social policy, and urban management are necessary 

(Blanco et al., 2020; Ojeikere et al., 2021). 

Lastly, research endeavors ought to prioritize policy 

acceptance, scalability, and empirical confirmation. To assess 

accuracy, generalizability, and reliability, predictive AI 

models need to be thoroughly evaluated against actual 

outbreak data. Diverse populations and geographical contexts 

should be included in validation studies to guarantee that 

models are resilient in high-density, low-resource, and other 

sensitive environments. Governments and public health 

organizations can confidently implement AI-supported 

decision-making by using the evidence from these studies to 

inform policy frameworks. Research on scalability, which 

focuses on computational efficiency, interoperability across 

health systems, and sustainable deployment techniques that 

enable models to function successfully at local, national, and 

international levels, is also crucial. 

Increasing transparency, incorporating dynamic and cross-

sectoral data, and developing a solid empirical basis for 

operational and policy adoption are the key to the future of 

AI-based infectious disease risk modeling. In an increasingly 

interconnected and complex world, research can improve 

public health systems' predictive capacity, equity, and 

resilience by addressing these priorities. This will ultimately 

support more proactive and successful interventions to 

protect vulnerable populations and strengthen global health 

security. 

 

Conclusion 

With its unparalleled capacity to forecast outbreak dynamics, 

evaluate population-level risk, and guide focused public 

health measures, AI-driven risk modeling has become a 

game-changing instrument in infectious disease monitoring. 

AI models offer complex, real-time insights into the 

transmission of disease by combining a variety of data 

sources, including mobility patterns, population density 

measures, environmental and socioeconomic variables, 

epidemiological case reports, and laboratory confirmations. 

In the end, these contributions improve the efficacy, 

promptness, and accuracy of public health actions by 

enabling early detection of nascent outbreaks, identifying 

high-risk communities, and optimizing the allocation of 

healthcare resources. 

AI-driven risk modeling is especially strategically important 

for safeguarding vulnerable groups. Communities in 

resource-constrained environments, informal communities, 

and high-density urban settlements are disproportionately 

vulnerable to infectious disease risks and frequently lack a 

strong healthcare infrastructure. Health authorities can 

proactively target interventions like immunization 

campaigns, mobile clinics, and containment measures thanks 

to AI-enabled solutions that make risk mapping, hotspot 

detection, and predictive resource planning easier. AI 

modeling promotes fair resource distribution and increases 

resilience among those most vulnerable to unfavorable health 

outcomes by predicting the spread of disease and identifying 

populations at increased risk. 

AI-driven risk modeling has important ramifications for 

national and international health security from a policy and 

practice standpoint. Predictive insights can help ensure that 

public health initiatives are evidence-based and focused at the 

national level by guiding emergency response operations, 

strengthening preparedness strategies, and strategically 

allocating healthcare resources. Globally, early warning 

systems are improved, coordinated international actions are 
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supported, and the risk of transnational disease propagation 

is reduced by integration with cross-border surveillance 

networks and standardized data-sharing frameworks. In 

addition to investing in infrastructure and capacity building 

to support sustainable implementation, policymakers are 

urged to adopt governance frameworks that prioritize data 

protection, transparency, and ethical AI deployment. 

By bridging predictive analytics, operational planning, and 

ethical governance, these approaches provide actionable 

intelligence that informs policy, improves preparedness, and 

fosters equitable and resilient public health systems at both 

national and international levels. AI-driven risk modeling is 

an important development in infectious disease surveillance, 

providing strategic tools to protect vulnerable populations 

and strengthen health security. 

 

References 
1. Abir SAA, Islam SN, Anwar A, Mahmood AN, Oo AMT. 

Building resilience against COVID-19 pandemic using 

artificial intelligence, machine learning, and IoT: a survey 

of recent progress. IoT. 2020;1(2):506-28. 

doi:10.3390/iot1020028. 

2. Agbehadji IE, Awuzie BO, Ngowi AB, Millham RC. 

Review of big data analytics, artificial intelligence and 

nature-inspired computing models towards accurate 

detection of COVID-19 pandemic cases and contact tracing. 

Int J Environ Res Public Health. 2020;17(15):5330. 

3. Aik J, Ong J, Ng LC. The effects of climate variability and 

seasonal influence on diarrhoeal disease in the tropical city-

state of Singapore–A time-series analysis. Int J Hyg 

Environ Health. 2020;227:113517. 

4. Anderson EL, Omenn GS, Turnham P. Improving health 

risk assessment as a basis for public health decisions in the 

21st century. Risk Anal. 2020;40(S1):2272-99. 

5. Baker RE, Mahmud AS, Miller IF, Rajeev M, 

Rasambainarivo F, Rice BL, et al. Infectious disease in an 

era of global change. Nat Rev Microbiol. 2022;20(4):193-

205. 

6. Bardosh KL, de Vries DH, Abramowitz S, Thorlie A, 

Cremers L, Kinsman J, et al. Integrating the social sciences 

in epidemic preparedness and response: a strategic 

framework to strengthen capacities and improve global 

health security. Global Health. 2020;16(1):120. 

7. Bates DW, Auerbach A, Schulam P, Wright A, Saria S. 

Reporting and implementing interventions involving 

machine learning and artificial intelligence. Ann Intern 

Med. 2020;172(11 Suppl):S137-44. 

8. Bedi JS, Vijay D, Dhaka P, Gill JPS, Barbuddhe SB. 

Emergency preparedness for public health threats, 

surveillance, modelling & forecasting. Indian J Med Res. 

2021;153(3):287-98. 

9. Blanco C, Wiley TR, Lloyd JJ, Lopez MF, Volkow ND. 

America’s opioid crisis: the need for an integrated public 

health approach. Transl Psychiatry. 2020;10(1):167. 

10. Chakilam C. AI-Driven Insights In Disease Prediction And 

Prevention: The Role Of Cloud Computing In Scalable 

Healthcare Delivery. Migr Lett. 2022;19(S8):2105-23. 

11. Chakraborty J, Majumder S, Menzies T. Bias in machine 

learning software: Why? how? what to do? In: Proceedings 

of the 29th ACM Joint Meeting on European Software 

Engineering Conference and Symposium on the 

Foundations of Software Engineering; 2021 Aug. p. 429-40. 

12. Chen AP, Hansoti B, Hsu EB. The COVID-19 pandemic 

response and its impact on Post-Pandemic health 

emergency and disaster risk management in the united 

States. Sustainability. 2022;14(23):16301. 

13. Chianumba EC, Ikhalea N, Mustapha AY, Forkuo AY. 

Developing a framework for using AI in personalized 

medicine to optimize treatment plans. J Front Multidiscip 

Res. 2022;3(1):57-71. 

14. Chisholm RH, Crammond B, Wu Y, Bowen AC, Campbell 

PT, Tong SY, et al. A model of population dynamics with 

complex household structure and mobility: implications for 

transmission and control of communicable diseases. PeerJ. 

2020;8:e10203. 

15. Decouttere C, De Boeck K, Vandaele N. Advancing 

sustainable development goals through immunization: a 

literature review. Global Health. 2021;17(1):95. 

16. Ejedegba EO. Equitable healthcare in the age of AI: 

predictive analytics for closing gaps in access and 

outcomes. Int J Res Publ Rev. 2022;3(12):2882-94. 

17. Faes M, Moens D. Recent trends in the modeling and 

quantification of non-probabilistic uncertainty. Arch 

Comput Methods Eng. 2020;27(3):1-39. 

18. Forkuo AY, Chianumba EC, Mustapha AY, Osamika D, 

Komi LS. Advances in digital diagnostics and virtual care 

platforms for primary healthcare delivery in West Africa. 

Methodology. 2022;96(71):48. 

19. Hamilton AJ, Strauss AT, Martinez DA, Hinson JS, Levin 

S, Lin G, et al. Machine learning and artificial intelligence: 

applications in healthcare epidemiology. Antimicrob 

Steward Healthc Epidemiol. 2021;1(1):e28. 

20. Hungbo AQ, Adeyemi CHR, Ajayi OO. Early warning 

escalation system for care aides in long-term patient 

monitoring. IRE Journals. 2020;3(7):321-45. 

21. Ibrahim NK. Epidemiologic surveillance for controlling 

Covid-19 pandemic: types, challenges and implications. J 

Infect Public Health. 2020;13(11):1630-8. 

22. Ikhalea N, Chianumba EC, Mustapha AY, Forkuo AY. A 

Conceptual Framework for AI-Driven Early Detection of 

Chronic Diseases Using Predictive Analytics. 2022. [Note: 

Journal/source details incomplete in original; formatted as 

available.] 

23. Imai N, Gaythorpe KA, Abbott S, Bhatia S, van Elsland S, 

Prem K, et al. Adoption and impact of non-pharmaceutical 

interventions for COVID-19. Wellcome Open Res. 

2020;5:59. 

24. Kakkar AK, Shafiq N, Singh G, Ray P, Gautam V, Agarwal 

R, et al. Antimicrobial stewardship programs in resource 

constrained environments: understanding and addressing 

the need of the systems. Front Public Health. 2020;8:140. 

25. Karadayi Y, Aydin MN, Öǧrencí AS. Unsupervised 

anomaly detection in multivariate spatio-temporal data 

using deep learning: early detection of COVID-19 outbreak 

in Italy. IEEE Access. 2020;8:164155-77. 

26. Kohnert D. On the socio-economic impact of pandemics in 

Africa-Lessons learned from COVID-19, Trypanosomiasis, 

HIV, Yellow Fever and Cholera. 2021. 

27. Kokala A. The Intersection of Explainable Ai and Ethical 

Decision-Making: Advancing Trustworthy Cloud-Based 

Data Science Models. Int J All Res Educ Sci Methods. 

2022;10(12):2166-83. 

28. Leitmeyer KC, Espinosa L, Broberg EK, Struelens MJ, 

Allerberger F, Dupont Y, et al. Automated digital reporting 

of clinical laboratory information to national public health 

surveillance systems, results of a EU/EEA survey, 2018. 

Euro Surveill. 2020;25(39):1900591. 

29. Lentzos F, Goodman MS, Wilson JM. Health security 

intelligence: engaging across disciplines and sectors. Intell 

Natl Secur. 2020;35(4):465-76. 

30. Liu Q, Liu M, Zhou H, Yan F, Ma Y, Shen W. Intelligent 

manufacturing system with human-cyber-physical fusion 

and collaboration for process fine control. J Manuf Syst. 



International Journal of Medical and All Body Health Research www.allmedicaljournal.com 

 
    250 | P a g e  

 

2022;64:149-69. 

31. Luca M, Barlacchi G, Lepri B, Pappalardo L. A survey on 

deep learning for human mobility. ACM Comput Surv. 

2021;55(1):1-44. 

32. Majeed A, Hwang SO. Data-driven analytics leveraging 

artificial intelligence in the era of COVID-19: an insightful 

review of recent developments. Symmetry. 2021;14(1):16. 

33. Martins KA, Ayebare RR, Bhadelia N, Kiweewa F, Waitt 

P, Mimbe D, et al. Pre-positioned outbreak research: the 

joint medical emerging diseases intervention clinical 

capability experience in Uganda. Health Secur. 

2020;18(2):114-24. 

34. McDermid JA, Jia Y, Porter Z, Habli I. Artificial 

intelligence explainability: the technical and ethical 

dimensions. Philos Trans R Soc A. 

2021;379(2207):20200363. 

35. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. 

A survey on bias and fairness in machine learning. ACM 

Comput Surv. 2021;54(6):1-35. 

36. Mehrdad S, Wang Y, Atashzar SF. Perspective: wearable 

internet of medical things for remote tracking of symptoms, 

prediction of health anomalies, implementation of 

preventative measures, and control of virus spread during 

the era of COVID-19. Front Robot AI. 2021;8:610653. 

37. Moodley K, Rennie S, Behets F, Obasa AE, Yemesi R, 

Ravez L, et al. Allocation of scarce resources in Africa 

during COVID‐19: Utility and justice for the bottom of the 

pyramid? Dev World Bioeth. 2021;21(1):36-43. 

38. Murad A, Kraemer FA, Bach K, Taylor G. Probabilistic 

deep learning to quantify uncertainty in air quality 

forecasting. Sensors (Basel). 2021;21(23):8009. 

39. Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, 

Pajuelo MJ, Saito M, et al. Urban informal settlements as 

hotspots of antimicrobial resistance and the need to curb 

environmental transmission. Nat Microbiol. 2020;5(6):787-

95. 

40. Nguyen DC, Ding M, Pathirana PN, Seneviratne A. 

Blockchain and AI-based solutions to combat coronavirus 

(COVID-19)-like epidemics: A survey. IEEE Access. 

2021;9:95730-53. 

41. Nnaji ND, Onyeaka H, Reuben RC, Uwishema O, Olovo 

CV, Anyogu A. The deuce-ace of Lassa Fever, Ebola virus 

disease and COVID-19 simultaneous infections and 

epidemics in West Africa: clinical and public health 

implications. Trop Med Health. 2021;49(1):102. 

42. Ojeikere K, Akomolafe OO, Akintimehin OO. A Model for 

Integrating Vulnerable Populations into Public Health 

Systems. Int J Multidiscip Res Growth Eval. 

2021;20(21.2):2-393. 

43. Oparah OS, Ezeh FE, Olatunji GI, Ajayi OO. Big Data-

Enabled Predictive Models for Anticipating Infectious 

Disease Outbreaks at Population and Regional Levels. 

2022. 

44. O'Sullivan TM, Ramsay JD. Public health security. In: 

Theoretical Foundations of Homeland Security. London: 

Routledge; 2020. p. 208-30. 

45. Palomares I, Martínez-Cámara E, Montes R, García-Moral 

P, Chiachio M, Chiachio J, et al. A panoramic view and 

swot analysis of artificial intelligence for achieving the 

sustainable development goals by 2030: progress and 

prospects. Appl Intell. 2021;51(9):6497-527. 

46. Paramasivan A. Big Data to Better Care: The Role of AI in 

Predictive Modelling for Healthcare Management. Int J 

Innov Res Creat Technol. 2020;6(3):1-9. 

47. Pratt B, Wild V, Barasa E, Kamuya D, Gilson L, Hendl T, 

et al. Justice: a key consideration in health policy and 

systems research ethics. BMJ Glob Health. 

2020;5(4):e001942. 

48. Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He 

X, et al. Causal inference and counterfactual prediction in 

machine learning for actionable healthcare. Nat Mach Intell. 

2020;2(7):369-75. 

49. Rahman MM, Paul KC, Hossain MA, Ali GMN, Rahman 

MS, Thill JC. Machine learning on the COVID-19 

pandemic, human mobility and air quality: A review. IEEE 

Access. 2021;9:72420-50. 

50. Reddy MS, Sarisa M, Konkimalla S, Bauskar SR, Gollangi 

HK, Galla EP, et al. Predicting tomorrow’s Ailments: How 

AI/ML Is Transforming Disease Forecasting. ESP J Eng 

Technol Adv. 2021;1(2):188-200. 

51. Reed‐Berendt R, Dove ES, Pareek M; UK‐REACH Study 

Collaborative Group. The ethical implications of big data 

research in public health:“big data ethics by design” in the 

uk‐reach study. Ethics Hum Res. 2022;44(1):2-17. 

52. Regmi K, Lwin CM. Factors associated with the 

implementation of non-pharmaceutical interventions for 

reducing coronavirus disease 2019 (COVID-19): a 

systematic review. Int J Environ Res Public Health. 

2021;18(8):4274. 

53. Sartorius B, Lawson AB, Pullan RL. Modelling and 

predicting the spatio-temporal spread of COVID-19, 

associated deaths and impact of key risk factors in England. 

Sci Rep. 2021;11(1):5378. 

54. Semenza JC, Rocklöv J, Ebi KL. Climate change and 

cascading risks from infectious disease. Infect Dis Ther. 

2022;11(4):1371-90. 

55. Shi L, Stevens GD. Vulnerable populations in the United 

States. Hoboken: John Wiley & Sons; 2021. 

56. Siegel RM, Mallow PJ. The impact of COVID-19 on 

vulnerable populations and implications for children and 

health care policy. Clin Pediatr (Phila). 2021;60(2):93-8. 

57. Tang L, Zhou Y, Wang L, Purkayastha S, Zhang L, He J, et 

al. A review of multi‐compartment infectious disease 

models. Int Stat Rev. 2020;88(2):462-513. 

58. Yigitcanlar T, Mehmood R, Corchado JM. Green artificial 

intelligence: Towards an efficient, sustainable and equitable 

technology for smart cities and futures. Sustainability. 

2021;13(16):8952. 

59. Zahid H, Shankar P. AI in Public Health: Integrating 

Disease Modelling and Healthcare AI for Improved 

Connectivity and Risk Management. 2020. 

60. Zeng D, Cao Z, Neill DB. Artificial intelligence–enabled 

public health surveillance from local detection to global 

epidemic monitoring and control. In: Artificial intelligence 

in medicine. London: Academic Press; 2021. p. 437-53. 

 


