

International Journal of Medical and All Body Health Research

Artificial Intelligence–Driven Epidemiological Surveillance for Early Detection of Emerging Infectious Diseases and National Health Security

Sarafa Olumide Olalere^{1*}, Joy Ejenavi Uzu-Okoh²

¹ Department of Peace and Development Studies, University of Ilorin, Ilorin, Kwara State, Nigeria

² Department of Nursing, University of Benin, Benin City, Edo State, Nigeria

* Corresponding Author: **Sarafa Olumide Olalere**

Article Info

ISSN (online): 2582-8940

Volume: 06

Issue: 02

April-June 2025

Received: 04-04-2025

Accepted: 05-05-2025

Published: 04-06-2025

Page No: 155-164

Abstract

Public health systems, socioeconomic stability, and national security are all under constant and growing threat from emerging infectious diseases. Particularly among highly mobile and environmentally sensitive populations, traditional epidemiological monitoring techniques, which mostly rely on manual reporting and delayed laboratory confirmation, frequently fail to identify epidemics in their early phases. The potential of artificial intelligence (AI)-driven epidemiological monitoring as a revolutionary strategy for the early identification of newly emerging infectious diseases and the reinforcement of national health security is examined in this paper. This summarizes recent developments in AI applications for epidemiological intelligence, emphasizing how automated risk scoring, pattern recognition, and spatiotemporal modeling might spot aberrant illness trends before they spread widely. The study looks at how AI-driven surveillance helps national health security by facilitating better coordination between public health, border control, and emergency management organizations, as well as proactive readiness and quick response decision-making through Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Despite these benefits, there are issues with data quality, interoperability, algorithmic bias, ethical governance, and data privacy when implementing AI-based surveillance systems. These restrictions are particularly noticeable in low- and middle-income nations, where technical capacity and digital infrastructure may be limited. All things considered, AI-driven epidemiological monitoring is a significant development in contemporary disease intelligence, providing strategic value for early outbreak identification, pandemic prevention, and national health security resilience in a world growing more interconnected by the day.

DOI: <https://doi.org/10.54660/IJMBHR.2025.6.2.155-164>

Keywords: Artificial Intelligence, Epidemiological Surveillance, Emerging Infectious Diseases, Early Outbreak Detection, National Health Security

Introduction

Emerging infectious diseases (EIDs) continue to pose serious threats to global public health, economic stability, and societal well-being, underscoring the central role of epidemiological surveillance and public health intelligence in contemporary health systems. In an increasingly interconnected world, outbreaks such as Ebola virus disease, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), COVID-19, and recurrent zoonotic influenza have demonstrated how rapidly novel pathogens can spread across national borders and overwhelm health infrastructures (Chathappady House *et al.*, 2021; Rahimi *et al.*, 2020). The emergence and re-emergence of infectious diseases have been accelerated by population growth, urbanization, climate change, international travel, ecological disruption, and intensified human–animal interactions, collectively

These dynamics highlight the urgent need for adaptive epidemiological surveillance systems capable of supporting early outbreak detection and timely risk mitigation. Traditional epidemiological surveillance systems have historically relied on laboratory confirmation, clinical notifications, and passive reporting to monitor disease occurrence (Burkom *et al.*, 2021; Meckawy *et al.*, 2022). While these approaches form the backbone of public health surveillance, they are frequently constrained by incomplete data, underdiagnosis, reporting delays, and limited spatial and temporal resolution. Surveillance infrastructures in many settings—particularly in low- and middle-income countries—also face chronic challenges related to insufficient funding, fragmented data systems, workforce shortages, and weak institutional interoperability (Fu and Hammer, 2022; Witter *et al.*, 2022). As a result, early warning signals of emerging infectious diseases are often missed, allowing transmission to become widespread before effective response measures are implemented, thereby undermining public health intelligence and outbreak control efforts.

In recent years, artificial intelligence (AI) has emerged as a powerful tool for strengthening epidemiological surveillance and enhancing public health intelligence. Advances in machine learning, predictive analytics, and computational capacity enable AI-driven systems to process large volumes of heterogeneous data in near real time (Iqbal *et al.*, 2020; Ang *et al.*, 2022). These systems can integrate conventional epidemiological data with non-traditional sources, including electronic health records, social media signals, environmental and meteorological indicators, and human mobility patterns. Through pattern recognition, anomaly detection, and predictive modeling, AI supports early outbreak detection, forecasting of disease trajectories, and more timely evidence-based decision-making than traditional surveillance methods (Agrebi and Larbi, 2020; Fong *et al.*, 2021).

Epidemiological surveillance is increasingly recognized as a core component of national health security, encompassing a country's capacity to prevent, detect, and respond to public health threats that could destabilize population health and national systems. Effective surveillance underpins early warning mechanisms, strategic resource allocation, and coordinated responses across public health agencies, border control, emergency management, and security sectors. When emerging infectious diseases are not detected early or responses are delayed, outbreaks can escalate into national and international crises with profound health, economic, and political consequences. Consequently, strengthening surveillance capacities through advanced technologies such as artificial intelligence and machine learning has become a strategic priority for enhancing national and global health security (Feijoo *et al.*, 2020; Al Knawy *et al.*, 2022).

This research therefore examines the role of artificial intelligence-driven epidemiological surveillance in the early detection of emerging infectious diseases and its implications for national health security. The study evaluates how integrated, data-driven public health intelligence systems can improve preparedness and response capabilities, explores AI-based methodological approaches for outbreak detection and prediction, and critically assesses the limitations of conventional surveillance models. By situating AI-enabled epidemiological surveillance within the broader framework of public health intelligence and health security, this study contributes to ongoing efforts to modernize disease

monitoring systems for a more resilient and proactive public health future.

The background of this study is theoretically grounded in Epidemiological Transition Theory, Risk Society Theory, and Complex Adaptive Systems Theory, which collectively explain why emerging infectious diseases (EIDs) remain a persistent global threat and why conventional surveillance approaches are increasingly insufficient.

Epidemiological Transition Theory explains the shifting patterns of disease burden associated with demographic change, urbanization, globalization, and environmental disruption. While early stages of transition emphasized declining infectious diseases, contemporary extensions of the theory recognize the re-emergence and emergence of novel pathogens, driven by climate change, zoonotic spillover, and global mobility. This theoretical perspective supports your argument that EIDs such as COVID-19, Ebola, and zoonotic influenza represent a new phase of epidemiological transition that requires more adaptive and anticipatory surveillance systems.

Risk Society Theory (Beck) further strengthens the background by framing pandemics as systemic, transboundary risks characterized by uncertainty, rapid propagation, and cascading societal consequences. Within this framework, infectious disease outbreaks are no longer isolated health events but national security risks affecting economic stability, governance, and social order. This theory justifies the increasing emphasis on early outbreak detection, public health intelligence, and national health security, as articulated in your introduction.

Finally, Complex Adaptive Systems Theory conceptualizes disease transmission as the outcome of nonlinear interactions among biological agents, human behavior, mobility networks, environmental conditions, and institutional responses. Traditional epidemiological surveillance largely linear and retrospective is theoretically misaligned with such complexity. AI-driven surveillance aligns with this theory by enabling real-time learning, feedback loops, and adaptive modeling across interconnected systems.

Statement of the Problem

The limitations of traditional epidemiological surveillance described in your manuscript are theoretically explained by Information Processing Theory, Surveillance Theory, and Institutional Theory.

Information Processing Theory highlights the cognitive and operational constraints of human-centered systems. Manual reporting, delayed laboratory confirmation, and fragmented databases exceed human processing capacity under fast-moving outbreak conditions, resulting in delayed detection and reactive responses. AI-driven systems expand processing capacity, enabling rapid synthesis of high-volume, high-velocity, and heterogeneous data streams, directly addressing this theoretical bottleneck.

Surveillance Theory explains how conventional systems rely on institutional reporting hierarchies that often exclude informal settlements, cross-border mobility, and early syndromic signals. This creates structural blind spots, particularly in low- and middle-income countries, where underreporting and fragmented health systems dominate. Your problem statement is therefore not merely operational but structural, rooted in surveillance architectures that are poorly suited to contemporary risk environments.

Institutional Theory further explains why surveillance

systems struggle to adapt: rigid bureaucratic processes, siloed data ownership, and weak interoperability constrain innovation. These institutional constraints explain persistent delays in outbreak identification despite technological advances, reinforcing the need for AI-enabled surveillance as a system-level transformation rather than a marginal improvement.

The research gap addressed in this study is theoretically grounded in Socio-Technical Systems Theory, Diffusion of Innovation Theory, and Equity Theory.

From a Socio-Technical Systems Theory perspective, much of the existing literature focuses narrowly on algorithmic performance (accuracy, sensitivity) while neglecting how AI systems interact with governance structures, institutional workflows, and decision-making processes. Your study addresses this gap by examining AI-driven surveillance as an integrated public health intelligence system with implications for preparedness, coordination, and national security.

Diffusion of Innovation Theory explains the uneven adoption of AI-based epidemiological surveillance, particularly in low- and middle-income countries. Despite demonstrated technical advantages, adoption is constrained by perceived complexity, lack of compatibility with existing systems, limited observability of benefits, and insufficient institutional trust. The gap lies in insufficient synthesis of how AI-enabled surveillance can be operationalized in diverse health system contexts.

Equity Theory highlights the risk that AI-driven surveillance may reinforce existing inequalities if vulnerable populations are underrepresented in training data or excluded from digital infrastructures. While algorithmic bias is acknowledged in prior studies, there is limited systematic analysis of how AI surveillance affects equity, vulnerability mapping, and fair resource allocation.

Methodology

This study applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to systematically examine evidence on artificial intelligence–driven epidemiological surveillance for the early detection of emerging infectious diseases and implications for national health security. A comprehensive literature search was conducted across major electronic databases, including PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar, to capture interdisciplinary research spanning public health, data science, and security studies. Searches covered publications from 2010 to 2024 and used controlled vocabulary and keywords related to artificial intelligence, machine learning, epidemiological surveillance, outbreak detection, infectious diseases, and national or global health security. Only peer-reviewed articles and high-quality conference proceedings published in English were considered to ensure methodological rigor and relevance.

Records retrieved from all sources were exported into reference management software, and duplicates were removed prior to screening. Titles and abstracts were independently screened against predefined eligibility criteria focusing on studies that applied AI or advanced analytics to disease surveillance, early warning systems, or outbreak prediction with explicit public health or security relevance. Studies that were purely theoretical, unrelated to infectious disease surveillance, or focused solely on clinical diagnosis without population-level monitoring were excluded. Full-text screening was then performed to confirm eligibility, with

reasons for exclusion documented to maintain transparency and reproducibility.

Data extraction followed a standardized template capturing study characteristics, data sources, AI techniques employed, surveillance context, performance metrics, and reported implications for preparedness and response. Methodological quality and risk of bias were assessed using adapted appraisal tools suitable for observational, modeling, and computational studies, emphasizing data quality, validation methods, and real-world applicability. Due to heterogeneity in study designs, data types, and outcome measures, a narrative synthesis was undertaken rather than a meta-analysis. The synthesis systematically compared AI approaches, surveillance architectures, and operational outcomes, highlighting strengths, limitations, and gaps in current evidence.

Result

Evidence-Based Policy Theory supports the use of systematic review and structured synthesis to inform public health and security decision-making. By critically evaluating AI applications across diverse surveillance contexts, your study contributes policy-relevant evidence on early detection, preparedness, and response effectiveness.

Data Fusion Theory provides the conceptual justification for integrating epidemiological, mobility, environmental, and digital data sources. Disease emergence is multi-causal, and no single data stream is sufficient for early detection. AI operationalizes data fusion by harmonizing heterogeneous inputs, compensating for missing data, and improving predictive robustness—particularly in data-scarce settings.

Decision Theory under Uncertainty explains the value of AI-based predictive analytics, anomaly detection, and scenario modeling. Public health authorities must act under time pressure and incomplete information. AI-driven models reduce uncertainty by expanding the decision space, enabling probabilistic risk assessment, and supporting proactive intervention planning. Your narrative synthesis evaluates AI systems not only on technical metrics but on their ability to improve decision quality and timeliness.

Conceptual Framework

In order to improve early outbreak identification and disease intelligence, the conceptual framework for artificial intelligence-driven epidemiological surveillance is based on the integration of sophisticated computer techniques with multi-source health and contextual data. Fundamentally, this concept presents machine learning (ML) and artificial intelligence (AI) as enabling technologies that convert massive, diverse, and dynamic datasets into useful epidemiological insights. The framework offers a methodical way to improve disease surveillance and public health readiness by connecting data collection, analytical modeling, and decision support (Shafqat *et al.*, 2020; Zeng *et al.*, 2021). The use of AI and machine learning techniques in epidemiology includes a wide range of approaches intended to find trends, connections, and abnormalities in complicated datasets. Based on past data, supervised learning techniques including logistic regression, random forests, and gradient boosting models are frequently used to classify epidemic signals, estimate transmission probabilities, and forecast disease risk. Clustering and anomaly detection algorithms are two examples of unsupervised learning techniques that are used to find unexpected patterns and identify departures from

baseline disease trends that can point to new outbreaks. Furthermore, by capturing nonlinear interactions across time and geographic location, deep learning models—such as recurrent and convolutional neural networks—support spatiotemporal modeling of disease processes. By extracting pertinent signals from unstructured sources including clinical notes, health bulletins, and digital media reports, natural language processing approaches expand epidemiological intelligence (Silverman *et al.*, 2021; Al-Garadi *et al.*, 2022). The integration of several data streams that jointly impact the onset and spread of disease is a key feature of the conceptual framework. Case notifications, test results, and syndromic monitoring indicators are examples of epidemiological data that offer fundamental insights into the prevalence of disease and its clinical features. Human mobility patterns, which are obtained via travel logs, mobile device data, and transportation networks, record population movement and connection, which are important factors in the cross-border spread of illness. Temperature, precipitation, humidity, land use, and air quality are examples of environmental and climatic indicators that provide contextual information on ecological circumstances that influence pathogen survival, vector behavior, and seasonal transmission dynamics (Upadhyay, 2020; Roy *et al.*, 2022). The approach places a strong emphasis on data fusion, which produces more reliable and context-sensitive outbreak forecasts than any one data source could produce on its own by harmonizing and analyzing these disparate inputs.

Scalability, interoperability, and adaptability are supported by the layered and modular architecture of AI-driven surveillance systems. Continuous data ingestion pipelines gather data from digital sources, environmental monitoring platforms, and health systems at the data layer. To guarantee quality and analytical preparedness, the processing layer carries out feature extraction, normalization, and data cleaning. AI and ML models provide risk scoring, anomaly detection, and predictive analysis at the analytics layer, producing insights on possible outbreak onset and propagation (Alamo *et al.*, 2020; Heidari *et al.*, 2022). The last layer concentrates on decision support and visualization, converting complicated model outputs into dashboards, alerts, and early warning signals that security stakeholders and public health authorities can understand. As fresh data becomes available, the architecture's feedback loops enable models to be updated and improved, improving learning and performance over time.

In this conceptual paradigm, epidemic intelligence heavily relies on real-time data analytics. AI-enabled platforms process incoming data continuously, allowing for near real-time situational awareness, in contrast to traditional surveillance systems that rely on recurring reporting cycles. This capability enables early assessment of possible effects on health systems and national security, fast forecasting of outbreak trajectories, and quick identification of aberrant epidemiological signals. Additionally, real-time analytics provide dynamic scenario modeling, which aids in proactive resource allocation and intervention strategy evaluation for decision-makers (Sarker, 2021; Olayinka, 2021). In an era of increasingly complex and rapidly evolving public health risks, the framework improves the overall resilience and efficacy of disease surveillance systems by decreasing detection and response delays.

Data Sources and Indicators

The systematic integration of several complementary data sources that jointly capture the biological, behavioral, and environmental factors of disease onset and transmission is essential for effective AI-driven epidemiological monitoring. The accuracy, dependability, and utility of outbreak detection and prediction models depend heavily on the choice and administration of suitable data sources and indicators. According to this framework, data quality, completeness, and timeliness determine the overall performance of surveillance systems, while epidemiological data, human mobility information, and environmental and climatic indicators form the core inputs that inform disease intelligence (Bardoutsos *et al.*, 2020; Bao *et al.*, 2022).

The fundamental layer of disease monitoring is made up of epidemiological data, which offer concrete proof of health events in populations. Case reports from medical facilities and public health agencies record both proven and suspected infections, along with clinical symptoms, geographic location, and demographics. Before laboratory confirmation is available, syndromic monitoring data, which monitor symptom patterns like fever, respiratory sickness, or gastrointestinal symptoms, provide early warning signs of possible outbreaks. Emergency rooms, general care visits, pharmacy sales, and digital health platforms are frequently used to gather this data. By verifying etiological agents and facilitating the tracking of pathogen evolution, antimicrobial resistance, and variant emergence, laboratory data—such as diagnostic test results, pathogen identification, and genomic sequencing—add crucial specificity (Filkins *et al.*, 2020; Govender *et al.*, 2021). Together, these epidemiological data sources support both early detection and detailed characterization of disease outbreaks.

Mobility statistics offer crucial insights into population mobility and connection, two major factors that contribute to the spread of infectious diseases. Road networks, public transportation systems, airline routes, and border crossings are examples of transport network data that can be used to predict the spread of viruses between nations and regions. High-resolution information on human movement patterns, contact rates, and changes in mobility behavior during public health interventions can be obtained by aggregating and anonymizing mobile device data. Understanding regular and seasonal mobility patterns is further improved by population movement data obtained from census records, migration statistics, and commuter flows. Mobility data can be used to predict cross-border or urban-rural disease spread, identify high-risk corridors, and model transmission paths spatiotemporally when combined with epidemiological markers (Hulme *et al.*, 2020; Orrell and Hussey, 2020).

Environmental and climatic variables provide important ecological background for epidemiological surveillance, especially for vector-borne and climate-sensitive illnesses. While humidity and air quality impact the dynamics of respiratory diseases, temperature and precipitation have an impact on pathogen survival, vector abundance, and seasonal transmission cycles. Human-environment interactions that promote zoonotic spillover and vector reproduction are shaped by land-use and land-cover data, including urbanization trends, deforestation, agricultural activity, and water bodies. These indicators can be continuously and spatially explicitly measured by satellite remote sensing and

environmental monitoring systems, making it possible to identify environmental conditions that are favorable to the formation of disease (Wang *et al.*, 2020; Estoque, 2020). The ability to predict outbreaks associated with environmental change and climate variability is improved by incorporating such data into AI-driven models.

The efficacy of surveillance systems is greatly impacted by issues with data quality, completeness, and timeliness despite the abundance of these data sources. Bias can be introduced and model accuracy decreased by inconsistent reporting standards, underreporting, missing values, and late data submission. Integration and interoperability are made more difficult by data fragmentation across organizations and industries. Since delays in data availability might offset the benefits of real-time analytics, timeliness is especially important for early epidemic identification. Standardized data collection procedures, automated reporting systems, reliable data validation procedures, and investments in digital infrastructure are all necessary to address these issues. To fully utilize AI-driven epidemiological monitoring and improve public health readiness, it is crucial to guarantee timely, accurate, and high-quality data (Lakarasu, 2022; Kommisetti and Dileep, 2022).

Applications in Early Outbreak Detection

Through capabilities that go beyond those of conventional, indicator-based public health monitoring, artificial intelligence-enabled epidemiological surveillance has emerged as a key application area for early epidemic detection. AI systems improve the timeliness, sensitivity, and strategic utility of outbreak intelligence by utilizing large-scale, heterogeneous data streams and sophisticated analysis approaches. This strengthens preparedness and national health security.

Finding anomalous disease patterns and early warning signs is one of the most important uses. Traditional monitoring systems usually depend on verified clinical reports, which are frequently postponed due to administrative, reporting, and diagnostic procedures. AI-driven systems, on the other hand, are capable of analyzing non-traditional data sources like drug sales, laboratory test requests, mobility data, environmental indicators, syndromic surveillance records, and digital trails from internet platforms or news media. Baseline patterns of illness occurrence and healthcare usage can be learned by machine learning algorithms, such as anomaly detection models and unsupervised clustering techniques. It is possible to identify deviations from these baselines in almost real time, such as anomalous increases in symptom clusters or spatially concentrated case signals (Burkot *et al.*, 2020; Hsu *et al.*, 2020). This capability improves reaction time and containment potential by enabling public health officials to identify possible outbreaks considerably earlier, even before laboratory confirmation.

Beyond detection, another crucial use of AI in early epidemic control is predictive modeling for disease onset and transmission. Machine learning, deep learning, and hybrid predictive models combine contextual factors including population density, climate, human mobility, vaccination coverage, and health system capacity with epidemiological data. These models can project short- and medium-term disease propagation under various scenarios, quantify transmission dynamics, and predict the probability of outbreak onset in particular places. AI-based prediction systems may adjust dynamically as new data becomes

available, enhancing accuracy in quickly changing scenarios, in contrast to conventional compartmental models that rely on predetermined assumptions (Maharao *et al.*, 2020; Antontsev *et al.*, 2021). Predictive insights are especially useful for identifying high-risk populations, forecasting resource requirements, and guiding proactive actions as opposed to reactive ones.

AI is also essential to the creation of technologies that help public health officials make decisions. Effective early epidemic identification requires prompt and well-informed decision-making. Policymakers and health managers can easily utilize the interpretable indicators, risk scores, and visualizations produced by AI-powered dashboards and decision-support platforms. Prioritizing surveillance, allocating funding for testing and vaccinations, implementing non-pharmaceutical therapies, and coordinating across administrative levels are all supported by these technologies. AI-driven decision-support systems reduce uncertainty and improve accountability during public health emergencies by using scenario analysis and "what-if" simulations to assess the possible impact of alternative response strategies (Vankayalapati, 2020; Martins and Soofastaei, 2020).

To maximize the efficacy and sustainability of current national and international surveillance systems, AI applications must be integrated with them. AI systems increasingly serve as complementary analytical layers that improve data processing, interpretation, and interoperability rather than taking the place of well-established surveillance infrastructures. AI solutions can acquire validated health data and feed back early warnings and prediction insights into regular reporting and response procedures through integration with national disease monitoring platforms. In an era of quick travel and transnational health hazards, cross-border epidemic identification and coordinated responses are made possible by connectivity with global surveillance networks at the international level. To guarantee that AI-driven surveillance outputs are reliable, useful, and compliant with public health regulations, interoperable architectures, standardized data formats, and governance frameworks are essential (Paramasivan, 2022; Mintoo *et al.*, 2022).

Artificial intelligence applications in early epidemic detection greatly improve the capacity to recognize aberrant illness signals, forecast outbreak dynamics, facilitate well-informed decision-making, and integrate intelligence across monitoring systems. These uses make public health systems more adaptable, robust, and forward-thinking, establishing AI as a strategic tool for enhancing early warning capabilities and preserving both domestic and international health security.

Implications for National Health Security

By improving a nation's capacity to foresee, identify, and react to infectious disease risks in a prompt and coordinated manner, artificial intelligence-driven epidemiological monitoring has significant implications for national health security. Beyond standard public health tasks, national health security includes safeguarding populations from situations that could undermine governance, economy, and health systems. AI-enabled surveillance systems strategically support readiness, response capability, and long-term resilience against pandemics and biothreats by facilitating early epidemic detection and data-driven decision-making. The improvement of readiness and quick response capability is one of AI-driven surveillance's most important

contributions to national health security. Public health authorities can launch investigations, gather resources, and put control measures in place before broad transmission happens when aberrant epidemiological signs are detected early. Forecasting disease trajectories, estimating healthcare demand, and identifying vulnerable populations and geographic hotspots are all possible with predictive analytics. Proactive planning, including pre-positioning medical supplies, expanding laboratory capacity, and maximizing personnel deployment, is supported by these insights. AI-driven systems increase operational preparedness and boost the efficacy of emergency response mechanisms at the national and subnational levels by lowering uncertainty and response times (Khan *et al.*, 2022; Sundaramurthy *et al.*, 2022).

AI-enabled epidemiological intelligence also significantly improves risk communication and early warning systems. Guiding public behavior, upholding trust, and guaranteeing adherence to public health measures all depend on timely and accurate risk communication. Based on real-time data analysis, AI-driven surveillance platforms can produce early warning signals that give decision-makers evidence-based evaluations of new dangers. These notifications can be converted into precise and focused communications for the public, healthcare professionals, and legislators. Furthermore, authorities are able to challenge misinformation, communicate danger in a clear and proportionate way, and modify message dynamically through ongoing monitoring of illness patterns and intervention outcomes. Thus, during medical emergencies, efficient early warning and communication systems lessen anxiety, facilitate well-informed decision-making, and enhance social collaboration (Tambo *et al.*, 2021).

AI-driven surveillance also helps with biosecurity and border health control, which are essential elements of national health security in a time of increased international mobility. Surveillance systems can identify high-risk routes, points of entry, and traveler profiles linked to an elevated risk of disease transmission by combining epidemiological intelligence with travel and mobility data. In order to minimize needless interruptions to trade and travel while upholding public safety, this information allows for targeted screening, testing, and quarantine measures at borders, ports, and airports. AI-enabled systems can also aid in the early identification of anomalous disease patterns that can indicate intentional biological events or lab mishaps, supporting more general biosecurity and biosurveillance goals.

AI-driven epidemiological surveillance supports long-term resilience against pandemics and biothreats in addition to its immediate reaction capabilities. By gathering information from previous outbreaks and response operations, continuous data-driven monitoring promotes institutional learning. This information may be utilized to improve preparedness strategies and bolster the capability of the health system. A whole-of-government approach to risk management is encouraged by the integration of monitoring across sectors, such as health, the environment, transportation, and security. Furthermore, in the face of uncertainty, scalable and flexible AI platforms may be updated to handle novel diseases and changing threat environments, guaranteeing ongoing relevance. AI-driven surveillance improves countries' capacity to endure, respond to, and recover from infectious disease emergencies by integrating predictive intelligence into regular public health operations (Abubakar *et al.*, 2020;

Santosh and Gaur, 2022).

A key component of contemporary national health security is AI-driven epidemiological surveillance. These systems offer strategic value for protecting population health and national stability in an increasingly interconnected and complex global environment through better preparedness, efficient risk communication, reinforced border control, and increased resilience to pandemics and biothreats.

Ethical, Legal, and Governance Considerations

In order to maintain responsible and sustainable public health practice, a complex set of ethical, legal, and governance considerations are introduced by the use of artificial intelligence in epidemiological surveillance for early outbreak identification. AI's reliance on massive, sensitive datasets raises important concerns about data privacy, individual rights, and societal trust, necessitating strong frameworks to guide ethical and legal compliance even though it offers significant advantages in timeliness, predictive accuracy, and decision support.

For the purpose to identify emerging disease patterns, AI-driven surveillance systems frequently integrate heterogeneous datasets, such as electronic health records, laboratory test results, social media activity, mobility patterns, and other personal identifiers; improper handling or unauthorized access to such data could result in breaches of confidentiality, identity exposure, or discrimination against vulnerable populations. Privacy-preserving techniques, such as anonymization, differential privacy, and federated learning, are increasingly used to mitigate risks, and their efficacy depends on strict implementation and ongoing monitoring (Zuo *et al.*, 2021; Rannenberg *et al.*, 2021).

The implementation of AI is further complicated by the ethical usage of personal health and mobility data. Highly detailed insights into population movement, contact patterns, and symptom clusters can be obtained using wearable technology, mobile phone location data, and self-reported health information. Although these datasets improve response targeting and outbreak prediction, their gathering and use may go against the principles of permission, human autonomy, and confidentiality expectations. Therefore, ethical frameworks that emphasize minimal data collection, purpose limitation, and the inclusion of opt-in or consent methods whenever possible must strike a balance between public health imperatives and respect for individual liberties. Equity must also be taken into account because an over-reliance on digital data sources may underrepresent marginalized groups, which could skew surveillance results and intervention tactics.

International cooperation is also crucial, especially for cross-border disease surveillance, where harmonizing data sharing agreements, ethical standards, and AI validation criteria enhances interoperability and collective security. Effective governance encompasses both national and institutional levels, including legislation on health data usage, standards for AI system validation, and protocols for risk assessment and mitigation. Multi-stakeholder governance models, incorporating public health authorities, technology developers, data protection agencies, and civil society.

The public acceptance and operational legitimacy of AI systems in epidemiology depend on transparency, accountability, and trust. AI models are frequently criticized for their "black-box" nature, where decision logic is opaque to both end users and affected populations. Transparent

reporting of model design, data provenance, analytical assumptions, and performance metrics fosters accountability and enables independent verification of outputs. Mechanisms for audit, error correction, and ethical review should be institutionalized to address potential biases, inaccuracies, or unintended consequences. Stakeholder engagement, inclusive policy development, and clear communication about the advantages and limitations of AI-driven surveillance.

For AI to be used responsibly in epidemiological surveillance, ethical, legal, and governance issues are crucial. Protecting individual rights and public confidence requires addressing data privacy and protection issues, guaranteeing the moral use of mobility and personal health data, creating thorough governance structures, and encouraging responsibility, openness, and trust. Public health authorities can use cutting-edge technologies for early outbreak detection while maintaining ethical standards, legal compliance, and social legitimacy by incorporating these factors into the design, implementation, and oversight of AI systems. This will ultimately strengthen national and global health security in a sustainable and equitable manner (Chianumba *et al.*, 2021; Syrowatka *et al.*, 2021).

Challenges and Limitations

Although artificial intelligence-driven epidemiological surveillance has the potential to significantly improve national health security and detect infectious diseases early, its implementation is fraught with difficulties. These challenges affect the precision, dependability, and scalability of AI-enabled surveillance systems and span technological, operational, and contextual dimensions. Designing efficient, fair, and long-lasting public health intelligence systems requires an understanding of these constraints.

Infrastructure limitations and data interoperability are two major issues with AI-driven surveillance. Heterogeneous datasets, such as epidemiological case reports, laboratory results, mobility data, and environmental indicators, must be integrated for AI and machine learning models to be effective. Aggregation and analysis are made more difficult by the fact that these data frequently exist in diverse systems with different formats, coding standards, and reporting methods. Inadequate interoperability can result in delayed outbreak detection, redundant efforts, and fragmented insights. Furthermore, many public health infrastructures lack reliable digital systems for real-time data collection, storage, and exchange, particularly in environments with limited resources. These issues are made worse by outdated health information systems, poor network connectivity, and irregular data entry procedures, which limit the ability of AI models to function effectively and precisely.

Another major limitation is algorithmic bias and model interpretability. AI models are trained on historical datasets that may contain inherent biases due to underreporting, demographic imbalances, or uneven geographic coverage. These biases can lead to skewed predictions that underrepresent vulnerable populations or overestimate risk in certain areas, potentially leading to unequal public health responses. Additionally, many advanced machine learning and deep learning models function as "black boxes," providing predictions without transparent explanations of how outputs are derived. Lack of interpretability erodes public health officials, policymakers, and the public acceptance of AI recommendations for crucial interventions.

Low- and middle-income countries (LMICs) have significant difficulties due to capability and resource constraints. AI-based monitoring necessitates large investments in high-speed internet access, computer equipment, and skilled workers who can handle, analyze, and understand complicated data. These limitations prevent many LMICs from deploying and maintaining AI platforms. Effective implementation is hampered by a lack of personnel, a lack of technical know-how, and inadequate training in epidemiology and data science. These resource disparities may put vulnerable groups at more risk of delayed epidemic identification and insufficient public health response due to the uneven global deployment of AI-enabled surveillance. Lastly, the reliance on technology and digital ecosystems emphasizes how susceptible AI-driven monitoring is to systemic disruptions. Cloud computing infrastructure, secure network connectivity, and constant access to real-time data streams are necessary for AI models to operate reliably. Outbreak identification, risk communication, and public health decision-making can all be hampered by disruptions brought on by power outages, cyberattacks, or software malfunctions. Furthermore, an excessive dependence on technological solutions may unintentionally diminish focus on field epidemiology, community-based reporting, and conventional surveillance techniques, all of which are still essential for thorough disease monitoring.

Although AI-driven epidemiological monitoring has a lot of potential, its efficacy is limited by problems with data interoperability, algorithmic bias, interpretability, budget constraints, and reliance on digital ecosystems. A multifaceted strategy is needed to address these issues, including investments in digital infrastructure, capacity building, data protocol standardization, ethical AI governance, and hybrid tactics that combine technology and conventional surveillance techniques. To guarantee that AI-enhanced surveillance systems are dependable, fair, and sustainable in a variety of international contexts, it is crucial to recognize and address these constraints (Truby, 2020; Santosh and Gaur, 2020).

Future Directions and Research Opportunities

Epidemiological monitoring has been revolutionized by artificial intelligence (AI), which makes it possible to quickly identify and forecast newly developing infectious illnesses. Future directions in AI-driven public health surveillance are crucial to overcome present constraints, improve predictive accuracy, and guarantee sustainable, egalitarian, and internationally coordinated epidemic response—despite notable advancements. In order to improve national and worldwide health security systems, research possibilities in this field concentrate on technology innovation, international integration, policy harmonization, and capacity building.

A crucial area for future progress is the development of explainable and adaptive AI models. Decision-makers in public health frequently criticize traditional AI algorithms, especially deep learning models, for being "black boxes," which limits their interpretability and credibility. By identifying relevant aspects and facilitating validation against epidemiological expertise, explainable AI (XAI) techniques seek to offer clear insights into how models derive predictions. Adaptive AI models improve reactivity to new disease threats and changing epidemiological landscapes because they can update continuously as new data streams become available (Pham *et al.*, 2020; Agrebi and Larbi,

2020). Future studies should concentrate on enhancing the harmony between interpretability and model complexity, creating hybrid frameworks that integrate data-driven AI with mechanistic epidemiological models, and establishing uniform performance, reliability, and ethical compliance evaluation metrics. These developments will promote public trust and accountability while supporting evidence-based decision-making.

Another significant opportunity is the integration of international and cross-border surveillance networks. National borders do not limit infectious illnesses, and coordinated surveillance across areas and real-time data sharing are necessary for early outbreak detection. AI can help harmonize disparate data sources, such as mobility data, environmental indicators, laboratory reports, and syndromic monitoring, to provide a single platform for predictive analytics. Research is required to build secure and privacy-preserving data exchange protocols, optimize interoperability, and implement distributed AI architectures that provide global situational awareness while respecting local governance frameworks. Coordinated reactions, prompt resource allocation, and quick containment tactics are made possible by this method, especially in areas with poor monitoring infrastructure or high transit connectivity.

To fully utilize AI in public health, international cooperation and policy harmonization are equally important. Cross-border data sharing and collaborative AI-driven epidemic detection projects may be hampered by disparities in legal frameworks, data protection regulations, and ethical standards. Models for global regulatory harmonization, the creation of common ethical standards for the application of AI, and procedures for cooperative risk assessment and algorithm evaluation should all be investigated in future studies. Establishing legislative frameworks that facilitate the quick, moral, and responsible application of AI tools in a variety of circumstances will require collaboration between governments, international health organizations, academic institutions, and technology developers (Morley *et al.*, 2022; Gardner *et al.*, 2022). By guaranteeing that low-resource areas profit from technological advancements, such harmonization improves global readiness and advances equity.

To guarantee the long-term efficacy of AI-driven surveillance systems, capacity building and sustainable deployment techniques are crucial. In addition to bolstering institutional infrastructure for data management, cybersecurity, and model maintenance, this entails educating public health workers in AI literacy, data analytics, and ethical governance. Opportunities for research include analyzing adoption hurdles, measuring workforce preparedness, and creating scalable implementation techniques that are customized for regional settings. A focus on sustainability guarantees that AI systems can integrate with regular public health operations without unduly depending on outside resources, be resilient to technical obsolescence, and adapt to changing disease landscapes.

Future developments in explainable and adaptive models, the integration of international surveillance networks, policy harmonization, and capacity building are all potential avenues for AI-driven epidemiological monitoring. Predictive accuracy, operational resilience, ethical compliance, and cross-border collaboration will all be improved by research in these areas. The next generation of AI tools can greatly improve early outbreak detection, guide

prompt public health interventions, and support long-term national and international health security by tackling organizational, technological, and governance issues (Allam *et al.*, 2020; Leslie, 2020).

Conclusion

A revolutionary development in public health intelligence, artificial intelligence-driven epidemiological monitoring offers previously unheard-of capabilities for early detection of newly emerging infectious illnesses and bolstering national health security. AI makes it possible to quickly identify abnormal disease patterns and predict outbreak trajectories by integrating machine learning algorithms, real-time data analytics, and multi-source datasets such as epidemiological reports, human mobility patterns, and environmental indicators. Important findings from this study show that AI overcomes a number of drawbacks in conventional epidemiological systems by facilitating proactive decision-making, risk prioritizing, and resource allocation in addition to improving the speed and accuracy of surveillance.

AI-driven surveillance plays a particularly important role in early illness identification. AI systems can detect signs of new diseases before they spread widely by continuously processing massive amounts of diverse data. This capacity enhances the resilience of healthcare systems, lowers morbidity and mortality, and facilitates prompt interventions. Furthermore, AI helps authorities to implement coordinated responses across public health, border control, and emergency management sectors by connecting outbreak intelligence to national health security strategies. This improves preparedness against both intentional and natural biological threats.

In order to guarantee privacy, equity, and openness, the implementation of AI-driven epidemiological monitoring requires the development of strong governance structures, data-sharing procedures, and ethical standards. To optimize the usefulness and sustainability of AI systems, investments in digital infrastructure, workforce development, and cross-sector cooperation are crucial. In order to guarantee thorough coverage, policymakers and public health professionals are urged to include AI technologies into standard surveillance workflows while concurrently preserving conventional field epidemiology techniques.

To sum up, AI-driven epidemiological surveillance plays a critical role in safeguarding global health. It improves national and international capacities for outbreak preparedness, response, and resilience by facilitating quick, data-driven insights into disease dynamics. The adoption and improvement of AI-enhanced surveillance systems will be essential for protecting public health, reducing social disruption, and assisting evidence-based policy decisions in the pursuit of global health security as infectious disease threats continue to change in an increasingly interconnected world.

References

1. Abubakar AI, Omeke KG, Ozturk M, Hussain S, Imran MA. The role of artificial intelligence driven 5G networks in COVID-19 outbreak: opportunities, challenges, and future outlook. *Front Commun Netw.* 2020;1:575065.
2. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: *Artificial intelligence in precision*

health. London: Academic Press; 2020. p. 415-38.

3. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Artificial intelligence in precision health. London: Academic Press; 2020. p. 415-38.
4. Al Knawy B, McKillop MM, Abduljawad J, Tarkoma S, Adil M, Schaper L, *et al.* Successfully implementing digital health to ensure future global health security during pandemics: a consensus statement. *JAMA Netw Open*. 2022;5(2):e220214.
5. Alamo T, Reina DG, Millán P. Data-driven methods to monitor, model, forecast and control covid-19 pandemic: Leveraging data science, epidemiology and control theory. *arXiv [Preprint]*. 2020 [cited 2026 Jan 10]. Available from: <https://arxiv.org/abs/2006.01731>.
6. Al-Garadi MA, Yang YC, Sarker A. The role of natural language processing during the COVID-19 pandemic: health applications, opportunities, and challenges. *Healthcare (Basel)*. 2022;10(11):2270.
7. Allam Z, Dey G, Jones DS. Artificial intelligence (AI) provided early detection of the coronavirus (COVID-19) in China and will influence future Urban health policy internationally. *AI*. 2020;1(2):156-65.
8. Ang KLM, Seng JKP, Ngharamike E, Ijemaru GK. Emerging technologies for smart cities' transportation: geo-information, data analytics and machine learning approaches. *ISPRS Int J Geo-Inf*. 2022;11(2):85.
9. Antontsev V, Jagarapu A, Bunney Y, Hou H, Khotimchenko M, Walsh J, *et al.* A hybrid modeling approach for assessing mechanistic models of small molecule partitioning *in vivo* using a machine learning-integrated modeling platform. *Sci Rep*. 2021;11(1):11143.
10. Bao H, Zhou X, Xie Y, Zhang Y, Li Y. Covid-gan+: Estimating human mobility responses to covid-19 through spatio-temporal generative adversarial networks with enhanced features. *ACM Trans Intell Syst Technol*. 2022;13(2):1-23.
11. Bardoutsos A, Filios G, Katsidimas I, Krousalis T, Nikoletseas S, Tzamalis P. A multidimensional human-centric framework for environmental intelligence: Air pollution and noise in smart cities. In: 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE; 2020. p. 155-64.
12. Burkhardt H, Loschen W, Wojcik R, Holtry R, Punjabi M, Siwek M, *et al.* Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE): overview, components, and public health applications. *JMIR Public Health Surveill*. 2021;7(6):e26303.
13. Burkhardt HS, Loschen WA, Wojcik RA, Holtry RS, Punjabi MA, Siwek MM, *et al.* ESSENCE, the Electronic Surveillance System for the Early Notification of Community-Based Epidemics. *medRxiv [Preprint]*. 2020. Available from: <https://www.medrxiv.org/content/10.1101/2020.08.07.20170508v1>.
14. Caron A, Jori F, de Nys H, Herbinger I, Liégeois F, Mouinga-Ondémé A, *et al.* Emergence/Re-emergence of Infectious Agents and Epidemic. In: The Forests of the Congo Basin: State of the Forests 2021. 2022. p. 265.
15. Chathappady House NN, Palissery S, Sebastian H. Corona viruses: a review on SARS, MERS and COVID-19. *Microbiol Insights*. 2021;14:11786361211002481.
16. Chianumba EC, Ikhalea NURA, Mustapha AY, Forkuo AY, Osamika DAMIOLA. A conceptual framework for leveraging big data and AI in enhancing healthcare delivery and public health policy. *IRE Journals*. 2021;5(6):303-10.
17. El-Sayed A, Kamel M. Climatic changes and their role in emergence and re-emergence of diseases. *Environ Sci Pollut Res Int*. 2020;27(18):22336-52.
18. Estoque RC. A review of the sustainability concept and the state of SDG monitoring using remote sensing. *Remote Sens (Basel)*. 2020;12(11):1770.
19. Feijóo C, Kwon Y, Bauer JM, Bohlin E, Howell B, Jain R, *et al.* Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. *Telecomm Policy*. 2020;44(6):101988.
20. Filkins LM, Bryson AL, Miller SA, Mitchell SL. Navigating clinical utilization of direct-from-specimen metagenomic pathogen detection: clinical applications, limitations, and testing recommendations. *Clin Chem*. 2020;66(11):1381-95.
21. Fong SJ, Dey N, Chaki J. Artificial intelligence for coronavirus outbreak. Singapore: Springer; 2021. p. 1-22.
22. Fu H, Hammer C. Toward a new, collaborative global financing architecture for fragile, low, and middle-income countries' data priorities. *Stat J IAOS*. 2022;38(3):741-8.
23. Gardner A, Smith AL, Steventon A, Coughlan E, Oldfield M. Ethical funding for trustworthy AI: proposals to address the responsibilities of funders to ensure that projects adhere to trustworthy AI practice. *AI Ethics*. 2022;2(2):277-91.
24. Govender KN, Street TL, Sanderson ND, Eyre DW. Metagenomic sequencing as a pathogen-agnostic clinical diagnostic tool for infectious diseases: a systematic review and meta-analysis of diagnostic test accuracy studies. *J Clin Microbiol*. 2021;59(9):e00250-21.
25. Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. *Neural Comput Appl*. 2022;34(18):15313-48.
26. Hsu JY, Wang YF, Lin KC, Chen MY, Hsu JHY. Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. *IEEE Access*. 2020;8:23427-39.
27. Hulme PE, Baker R, Freckleton R, Hails RS, Hartley M, Harwood J, *et al.* The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. *NeoBiota*. 2020;62:39-75.
28. Iqbal R, Doctor F, More B, Mahmud S, Yousuf U. Big Data analytics and Computational Intelligence for Cyber-Physical Systems: Recent trends and state of the art applications. *Future Gener Comput Syst*. 2020;105:766-78.
29. Khan RS, Sirazy MRM, Das R, Rahman S. An ai and ml-enabled framework for proactive risk mitigation and resilience optimization in global supply chains during national emergencies. *Sage Sci Rev Appl Mach Learn*. 2022;5(2):127-44.
30. Kokala A. The Intersection of Explainable Ai and Ethical Decision-Making: Advancing Trustworthy Cloud-Based Data Science Models. *Int J All Res Educ Sci Methods*. 2022;10(12):2166-83.
31. Kommisetti PDNK, Dileep V. Leading the future: big

data solutions, cloud migration, and AI-driven decision-making in modern enterprises. *Educ Adm Theory Pract.* 2022;28(03):352-64.

32. Lakarasu P. AI-Driven Data Engineering: Automating Data Quality, Lineage, And Transformation In Cloud-Scale Platforms. 2022.
33. Leslie D. Tackling COVID-19 through responsible AI innovation: Five steps in the right direction. *arXiv [Preprint].* 2020 [cited 2026 Jan 10]. Available from: <https://arxiv.org/abs/2008.06755>.
34. Maharao N, Antontsev V, Wright M, Varshney J. Entering the era of computationally driven drug development. *Drug Metab Rev.* 2020;52(2):283-98.
35. Martins P, Soofastaei A. Making decisions based on analytics. In: *Data analytics applied to the mining industry.* Boca Raton: CRC Press; 2020. p. 193-221.
36. Meckawy R, Stuckler D, Mehta A, Al-Ahdal T, Doebbeling BN. Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review. *BMC Public Health.* 2022;22(1):2216.
37. Mintoo AA, Saimon ASM, Bakhsh MM, Akter M. NATIONAL RESILIENCE THROUGH AI-DRIVEN DATA ANALYTICS AND CYBERSECURITY FOR REAL-TIME CRISIS RESPONSE AND INFRASTRUCTURE PROTECTION. *Am J Scholarly Res Innov.* 2022;1(01):137-69.
38. Morley J, Murphy L, Mishra A, Joshi I, Karpathakis K. Governing data and artificial intelligence for health care: developing an international understanding. *JMIR Form Res.* 2022;6(1):e31623.
39. Olayinka OH. Big data integration and real-time analytics for enhancing operational efficiency and market responsiveness. *Int J Sci Res Arch.* 2021;4(1):280-96.
40. Orrell DL, Hussey NE. Using the VEMCO Positioning System (VPS) to explore fine-scale movements of aquatic species: applications, analytical approaches and future directions. *Mar Ecol Prog Ser.* 2022;687:195-216.
41. Paramasivan A. Leveraging artificial intelligence to automate healthcare data management and enhance interoperability. *J Sci Eng Res.* 2022;9(1):190-203.
42. Pham QV, Nguyen DC, Huynh-The T, Hwang WJ, Pathirana PN. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: a survey on the state-of-the-arts. *IEEE Access.* 2020;8:130820-39.
43. Qadir J, Islam MQ, Al-Fuqaha A. Toward accountable human-centered AI: rationale and promising directions. *J Inf Commun Ethics Soc.* 2022;20(2):329-42.
44. Rahimi FS, Afaghi S, Tarki FE, Goudarzi K, Alamdari NM. Viral outbreaks of SARS-CoV1, SARS-CoV2, MERS-CoV, influenza H1N1, and ebola in 21st Century; a comparative review of the pathogenesis and clinical characteristics. *Student Res Transl Med.* 2020;2(3):1-8.
45. Rannenberg K, Pape S, Tronnier F, Löbner S. Study on the technical evaluation of de-identification procedures for personal data in the automotive sector. Technical report. Frankfurt: Goethe University Frankfurt; 2021.
46. Roy PS, Ramachandran RM, Paul O, Thakur PK, Ravan S, Behera MD, et al. Anthropogenic land use and land cover changes A review on its environmental consequences and climate change. *J Indian Soc Remote Sens.* 2022;50(8):1615-40.
47. Santosh KC, Gaur L. Artificial intelligence and machine learning in public healthcare: Opportunities and societal impact. Singapore: Springer Nature; 2022.
48. Sarker IH. Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. *SN Comput Sci.* 2021;2(5):377.
49. Shafqat S, Kishwer S, Rasool RU, Qadir J, Amjad T, Ahmad HF. Big data analytics enhanced healthcare systems: a review. *J Supercomput.* 2020;76(3):1754-99.
50. Silverman GM, Sahoo HS, Ingraham NE, Lupei M, Puskarich MA, Usher M, et al. Nlp methods for extraction of symptoms from unstructured data for use in prognostic covid-19 analytic models. *J Artif Intell Res.* 2021;72:429-74.
51. Sundaramurthy SK, Ravichandran N, Inaganti AC, Muppalaneni R. AI-powered operational resilience: Building secure, scalable, and intelligent enterprises. *Artif Intell Mach Learn Rev.* 2022;3(1):1-10.
52. Syrowatka A, Kuznetsova M, Alsubai A, Beckman AL, Bain PA, Craig KJT, et al. Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases. *NPJ Digit Med.* 2021;4(1):96.
53. Tambo E, Djuikoue IC, Tazemda GK, Fotsing MF, Zhou XN. Early stage risk communication and community engagement (RCCE) strategies and measures against the coronavirus disease 2019 (COVID-19) pandemic crisis. *Glob Health J.* 2021;5(1):44-50.
54. Truby J. Governing artificial intelligence to benefit the UN sustainable development goals. *Sustain Dev.* 2020;28(4):946-59.
55. Upadhyay RK. Markers for global climate change and its impact on social, biological and ecological systems: A review. *Am J Clim Change.* 2020;9(3):212-43.
56. Vankayalapati RK. AI-Driven Decision Support Systems: The Role Of High-Speed Storage And Cloud Integration In Business Insights. *SSRN [Preprint].* 2020. Available from: <https://ssrn.com/abstract=5103815>.
57. Wang Y, Lu Z, Sheng Y, Zhou Y. Remote sensing applications in monitoring of protected areas. *Remote Sens (Basel).* 2020;12(9):1370.
58. Witter S, Sheikh K, Schleiff M. Learning health systems in low-income and middle-income countries: exploring evidence and expert insights. *BMJ Glob Health.* 2022;7(Suppl 7):e008115.
59. Zeng D, Cao Z, Neill DB. Artificial intelligence-enabled public health surveillance from local detection to global epidemic monitoring and control. In: *Artificial intelligence in medicine.* London: Academic Press; 2021. p. 437-53.
60. Zuo Z, Watson M, Budgen D, Hall R, Kennelly C, Al Moubayed N. Data anonymization for pervasive health care: systematic literature mapping study. *JMIR Med Inform.* 2021;9(10):e29871.