

Beyond Antidepressants: Exploring Biochemical Pathways for Next-Generation Postpartum Depression Therapies

Abidemi Omolayo Owokoya

Independent Researcher, Atlanta, Georgia, United States

* Corresponding Author: Abidemi Omolayo Owokoya

Article Info

ISSN (online): 2582-8940

Volume: 06 Issue: 04

October-December 2025 Received: 05-09-2025 Accepted: 06-10-2025 Published: 01-11-2025

Page No: 77-92

Abstract

Postpartum depression (PPD) remains a significant global health concern, affecting approximately one in seven mothers, with profound consequences for maternal well-being, infant development, and family stability. Current therapeutic approaches, predominantly antidepressant medications and psychotherapy, have demonstrated only partial efficacy and often face challenges related to delayed onset of action, limited accessibility, and patient reluctance due to safety concerns during breastfeeding. These limitations underscore the urgent need for novel, mechanistically targeted interventions that extend beyond conventional antidepressant paradigms. Recent advances in neuroscience, endocrinology, and molecular biology have revealed complex biochemical pathways implicated in the onset and progression of PPD, offering promising avenues for next-generation therapies. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, altered neuroinflammatory responses, disruptions in neurosteroid signaling, and imbalances in gut-brain axis communication are increasingly recognized as key contributors to postpartum mood disturbances. Innovative therapeutic strategies targeting these pathways, such as the modulation of allopregnanolone and related neurosteroids, anti-inflammatory agents, gut microbiome interventions, and hormonal regulation therapies, have demonstrated potential in preclinical and early clinical studies. Moreover, precision medicine approaches integrating biomarker identification and genetic profiling hold promise for tailoring interventions to individual patient profiles, enhancing treatment efficacy while minimizing adverse effects. This paradigm shift from symptom management to biochemical pathway modulation signals the emergence of a new era in PPD treatment. By harnessing cross-disciplinary insights from psychiatry, immunology, endocrinology, and systems biology, future therapies can more effectively address the multifactorial nature of postpartum depression. Such advancements not only promise improved maternal mental health outcomes but also safeguard child development and strengthen family resilience. Ultimately, exploring these biochemical underpinnings offers a transformative path toward developing safe, rapid, and sustainable next-generation interventions for postpartum depression. Bridging these scientific advances with scalable, real-world clinical applications will be critical to ensuring equitable access and meaningful outcomes for mothers worldwide.

DOI: https://doi.org/10.54660/IJMBHR.2025.6.4.77-92

Keywords: Postpartum Depression, Biochemical Pathways, Hypothalamic–Pituitary–Adrenal (Hpa) Axis, Neurosteroids, Allopregnanolone, Neuroinflammation, Gut–Brain Axis, Hormonal Regulation, Precision Medicine, Next-Generation Therapies.

Introduction

Postpartum depression (PPD) is a major public health concern that affects a significant proportion of new mothers worldwide, with estimates suggesting that nearly one in seven women experience moderate to severe depressive symptoms following childbirth. The consequences extend far beyond the individual mother, influencing infant development, maternal—child bonding, family dynamics, and broader societal well-being (Adeshina, 2021) [7], (Halliday, 2021) [50], (Olajide *et al*, 2021) [80].

Untreated PPD has been linked to impaired cognitive and emotional outcomes in children, disruptions in marital relationships, and increased risk of chronic mental health conditions in mothers, making it a pressing issue that demands more effective and comprehensive treatment strategies.

Current therapeutic approaches, primarily antidepressant medications and psychotherapies, provide relief for many but remain limited in scope and accessibility. Antidepressants, while widely prescribed, are hindered by delayed onset of action, incomplete efficacy, and safety concerns related to breastfeeding and infant exposure. Psychotherapies, though beneficial, are constrained by cost, availability of trained professionals, and varying patient adherence. Even with newer interventions such as brexanolone, access and affordability remain major barriers, leaving a substantial number of women underserved or untreated (Awe, Akpan & Adekoya, 2017) [28], (Liu *et al*, 2021) [71]. These challenges highlight the inadequacy of conventional approaches to fully address the complexity of postpartum depression.

The growing body of research on the biological and biochemical underpinnings of PPD underscores the need to move beyond traditional treatment paradigms and explore novel therapeutic pathways. Evidence points to a range of interconnected mechanisms including dysregulation of the hypothalamic-pituitary-adrenal axis, altered neurosteroid activity, immune system and inflammatory responses, gutbrain communication, and hormonal fluctuations that contribute to the onset and persistence of PPD (Thurgood, Avery & Williamson, 2009) [95]. By targeting these pathways directly, it becomes possible to develop next-generation therapies that act more rapidly, provide greater precision, and minimize risks associated with conventional treatments. This paradigm shift offers the potential not only to improve maternal outcomes but also to safeguard infant development and family well-being, thereby opening new frontiers in the prevention and treatment of postpartum depression (Akanji & Ajayi, 2022) [13], (Isa, 2022) [55].

2. Methodology

This study adopts a systematic review and integrative synthesis approach to explore biochemical pathways for next-generation postpartum depression (PPD) therapies beyond traditional antidepressants. The methodology combines evidence synthesis from multidisciplinary literature, structured data mining, and translational mapping of findings to identify therapeutic opportunities. A comprehensive body of peer-reviewed studies was drawn from biomedical, public health, and healthcare innovation domains, particularly those addressing PPD pathophysiology, biochemical markers, and digital health-enabled clinical applications. The review included empirical studies, randomized controlled trials, systematic reviews, conceptual frameworks, and translational models.

The first stage involved identifying and collating relevant articles from the provided body of literature, emphasizing research published between 2012 and 2024 to ensure both

contemporary relevance and historical context. Studies were screened for their focus on biochemical, neuroendocrine, immunological, and microbiome-related pathways underlying PPD, while also integrating findings on AI-driven analytics, predictive modeling, and telehealth innovations from the healthcare systems literature. This integrative approach was selected because the complexity of PPD requires not only biochemical insights but also scalable strategies for patient stratification, prevention, and individualized care.

The analysis followed a thematic coding and synthesis process. Studies were categorized into domains: (1) endocrine and hormonal pathways, including CRH, cortisol, and estrogen-progesterone shifts; (2) neurochemical and neurotransmitter imbalances, with emphasis on GABAergic, glutamatergic, and monoaminergic signaling; (3) immune and inflammatory responses, focusing on cytokine dysregulation; (4) gut-brain axis and microbiome interactions; and (5) computational and technological relevant to biomarker discovery frameworks personalized therapy design. Articles addressing revenue cycle management, telehealth, and predictive analytics were incorporated to map financial sustainability and access implications of emerging interventions, highlighting translational feasibility within real-world healthcare systems. Data were extracted into a structured evidence matrix that linked biochemical mechanisms to therapeutic innovations such as neurosteroid modulators (e.g., brexanolone), ketamine metabolites, microbiome-targeted interventions, and AI-enabled biomarker screening. A narrative synthesis was then employed to integrate evidence across domains, identifying consistencies, gaps, and contradictions. Methodological triangulation was applied by combining traditional clinical evidence with computational and health systems research, ensuring robust validity of insights.

The final stage involved constructing a conceptual translational pathway, aligning biochemical discoveries with therapeutic innovation and policy considerations. This was achieved by integrating clinical trial findings, biochemical markers, and predictive analytics into a multi-stage therapeutic pipeline. The pipeline connects laboratory research to patient-level interventions, considering issues of cost-effectiveness, scalability, and accessibility across diverse populations. In particular, emphasis was placed on how AI-driven diagnostic models and business intelligence dashboards could accelerate the translation of biochemical insights into personalized treatment plans for PPD, as highlighted by Adeleke, Adelusi, Adeshina, Ajayi, and collaborators.

This integrative methodology ensures that the study not only identifies biochemical pathways for next-generation PPD therapies but also contextualizes them within healthcare systems, digital innovations, and policy frameworks. By synthesizing cross-disciplinary evidence, the approach bridges molecular discoveries with translational opportunities, thereby creating a holistic framework to advance PPD care beyond antidepressants.

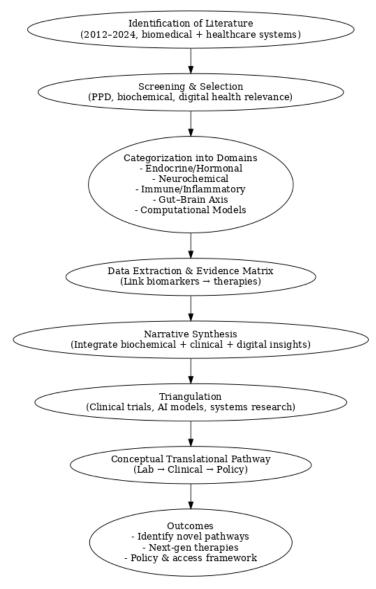


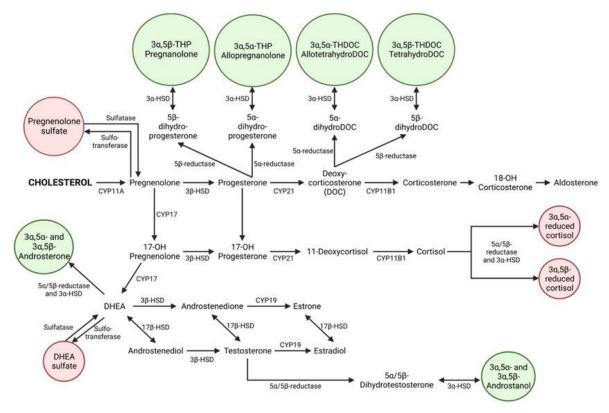
Fig 1: Flowchart of the study methodology

3. Current Landscape of Postpartum Depression Therapies

Postpartum depression remains one of the most common and impactful complications of childbirth, and the current treatment landscape reflects both decades of therapeutic practice and emerging innovations. Standard antidepressant medications particularly selective serotonin reuptake inhibitors (SSRIs) consistently serve as the cornerstone of pharmacological approaches. These agents typically require a latency period before meaningful relief occurs; clinical guidelines suggest that antidepressants often begin to show effects within approximately one to two weeks, though full therapeutic benefits may take up to eight weeks to manifest (Afolabi, Ajayi & Olulaja, 2024) [10]. This delayed onset is especially problematic in the postpartum context when swift restoration of maternal mood and function is essential for both mother and infant well-being.

Among SSRIs, sertraline and paroxetine are frequently favored for breastfeeding mothers owing to their lower concentrations in breast milk and minimal infant exposure risk. Sertraline, in particular, has been recognized as a preferred pharmacologic choice in lactating women due to its minimal transfer and favorable safety profile (Tolossa *et al*, 2020) ^[96]. Nevertheless, concerns remain regarding even low-level exposure, and breastfeeding mothers often face difficult

decisions balancing maternal mental health with infant safety. For many women, hesitation to initiate or continue SSRIs may be influenced by perceived stigma, fear of judgement, or uncertainty about long-term effects on the child factors that can further limit effective uptake (Imohiosen *et al*, 2024) [52], (Owot *et al*, 2024) [85].


In clinical practice, antidepressants often yield only partial remittance, with numerous patients experiencing residual symptoms or relapse. Real-world challenges such as access to psychiatrists, medication side effects, financial cost, social stigma, and fragmented follow-up care compound the difficulties. The need for frequent monitoring in the delicate perinatal period places additional strain on already vulnerable populations (Amer et al, 2024) [25], (Bener et al, 2012) [32]. Psychotherapeutic interventions like cognitive-behavioral therapy (CBT) and interpersonal psychotherapy (IPT) have demonstrated efficacy comparable to pharmacotherapy, offering symptom relief without pharmacologic risks. These treatments enable mothers to develop coping strategies, negotiate interpersonal roles, and reframe maladaptive thoughts. However, access remains a major challenge. In many regions, there is a dearth of trained mental health

professionals specializing in perinatal mental health. Long

waitlists, cost barriers, lack of insurance coverage, logistical

constraints such as childcare needs, and transportation issues further hinder accessibility (Adeshina, Owolabi & Olasupo, 2023) ^[9]. Although telehealth has emerged as a promising modality to bridge these gaps, disparities persist; not all patients have reliable internet access or privacy conducive to therapy sessions. The cumulative effect is that many women

remain untreated or undertreated, despite the documented benefits of psychotherapy. Figure 2 shows the pathways involved in the synthesis of neuroactive steroids, including allopregnanolone, from cholesterol presented by Carlini, Osborne & Deligiannidis, 2023.

Fig 2: the pathways involved in the synthesis of neuroactive steroids, including allopregnanolone, from cholesterol (Carlini, Osborne & Deligiannidis, 2023).

Against this backdrop, the advent of fast-acting therapeutic options represents a significant shift. In 2019, the FDA approved brexanolone (brand name Zulresso), a proprietary formulation of allopregnanolone a neuroactive steroid endogenous to human physiology. Administered as a continuous 60-hour intravenous infusion, brexanolone demonstrated rapid reductions in depressive symptoms in clinical trials, with improvements noted within days a notable departure from the typical weeks-long onset of SSRIs (Owot et al, 2024) [85], (Oboh et al, 2024) [76]. Its mechanism targets modulation of GABAergic neurotransmission, reflected in accelerated relief that substantially benefits severely affected patients. However, the administration protocol requiring inpatient monitoring under a Risk Evaluation and Mitigation Strategy (REMS) due to sedation and loss of consciousness risks poses limitations. Not only does this create logistical, cost, and facility-access barriers, but the REMS program also mandates intensive oversight, further restricting availability to specialized centers.

Emerging soon after was zuranolone, an oral neuroactive steroid structurally related to brexanolone. Approved more recently in August 2023, zuranolone offers a 14-day homebased treatment with potentially faster onset than traditional antidepressants. The convenience of oral administration represents a leap forward, yet safety data during lactation remain limited. ACOG notes that zuranolone does pass into breast milk, though its relative infant dose appears lower than that seen with SSRIs (Akpan *et al*, 2017) ^[20]. Still, the absence of robust infant outcome data leads to clinical uncertainty, and many providers may hesitate to offer it to breastfeeding mothers until more information emerges.

These developments brexanolone's rapid efficacy and controlled delivery model, and zuranolone's more practical oral administration mark promising strides toward addressing the delayed onset, partial responses, and accessibility issues that undermine conventional treatments. Yet they also highlight the persistent challenge of balancing innovation with safety and equitable access. High costs, regulatory restrictions, and infrastructure demands for brexanolone inhibit widespread adoption. Zuranolone, while more accessible, lacks long-term safety evaluation in breastfeeding settings, contributing to provider and patient caution (Adeshina, 2023) [8], (Bener, Gerber & Sheikh, 2012) [33]. Figure 3 shows the concept map summarizing the effects of perinatal SSRI exposure on neurodevelopment presented by Glover & Clinton, 2016.

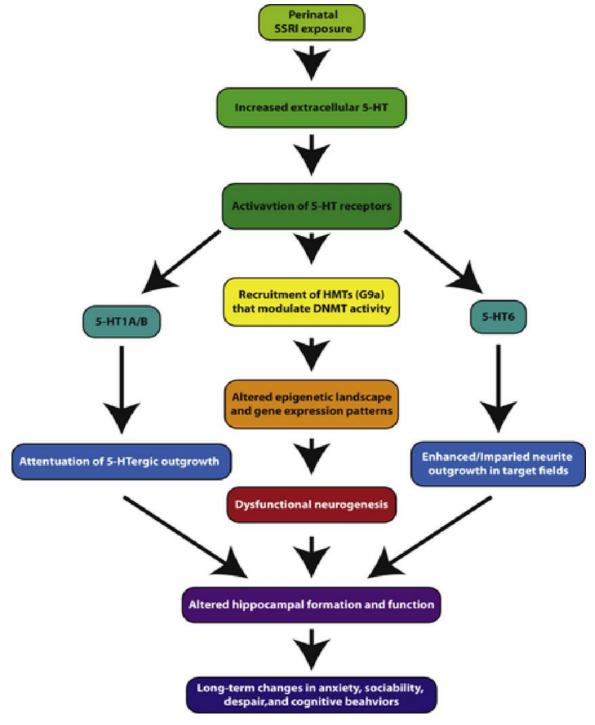


Fig 3: Concept map summarizing the effects of perinatal SSRI exposure on neurodevelopment (Glover & Clinton, 2016).

Taken together, the current therapeutic landscape for postpartum depression spans a spectrum of approaches from the standard but slow-acting SSRIs and IPT/CBT paradigms with known efficacy but limited reach, to pioneering neurosteroid-based regimens that offer speed at a premium. Each modality has its trade-offs; traditional strategies grapple with delays, partial response, and uptake obstacles, while emerging treatments promise rapid relief but bring concerns over cost, delivery, and safety. These limitations underscore the urgent need to expand next-generation therapies that can act rapidly, accommodate patients across diverse settings, and integrate safety especially for breastfeeding dyads (Ajayi & Akanji, 2023) [16], (Saharoy *et al*, 2023) [89].

Emerging research into other biochemical pathways such as

modulation of the HPA axis, inflammatory networks, neurosteroid synthesis, and gut-brain communication may yield interventions that combine fast action with ease of administration and lower risk. For now, the current landscape serves as a critical reference point: familiar treatments that work slowly and imperfectly, psychotherapies that require resource-intensive delivery, and novel agents that are swift but still encumbered by structural and safety constraints. Advancing beyond these approaches will be essential to truly transform postpartum depression care, making recovery faster, safer, and more accessible for mothers and their families everywhere (Hahn-Holbrook, Cornwell-Hinrichs & Anaya, 2018) [49].

4. Biochemical Mechanisms Underlying PPD

Postpartum depression is increasingly understood as a multifactorial condition rooted not only in psychosocial stressors but also in deeply interwoven biochemical and physiological processes. One of the most widely studied pathways implicated in the onset of postpartum mood disturbances is the hypothalamic-pituitary-adrenal (HPA) axis. This neuroendocrine system is central to the regulation of stress responses, and it undergoes significant alterations during pregnancy. Normally, pregnancy is characterized by a progressive rise in cortisol levels driven by placental corticotropin-releasing hormone, a phenomenon that resets maternal stress responsivity. After childbirth, abrupt withdrawal of placental hormones leads to dramatic recalibration of the HPA axis. For many women, the system returns to equilibrium; however, in others, maladaptive reactivity of the HPA axis persists, manifesting as blunted or exaggerated cortisol responses (Awe, 2021) [29], (Isa, Johnbull & Ovenseri, 2021) [61]. Dysregulated cortisol signaling has been associated with impaired mood regulation, anhedonia, and heightened vulnerability to depressive symptoms. These changes suggest that persistent stress dysregulation may be a critical biochemical underpinning of postpartum depression, linking stress physiology directly to mood disturbances in the early maternal period.

Beyond the HPA axis, neurosteroids particularly allopregnanolone play a vital role in maintaining emotional stability during and after pregnancy. Allopregnanolone is a potent positive allosteric modulator of GABA-A receptors, enhancing inhibitory neurotransmission and producing anxiolytic and antidepressant-like effects. During pregnancy. circulating levels of this neurosteroid rise substantially, contributing to maternal resilience against stress. Following delivery, however, there is a precipitous decline in allopregnanolone, coinciding with increased susceptibility to mood destabilization (Imohiosen et al, 2023) [53]. This sudden withdrawal is thought to impair GABAergic tone, reducing neural inhibition and creating vulnerability to anxiety and depression. Preclinical models support this hypothesis, showing that deficits in neurosteroid signaling are associated with depressive phenotypes. The success of brexanolone, an exogenous formulation of allopregnanolone, in rapidly alleviating postpartum depression symptoms highlights the centrality of neurosteroids in mood regulation. This therapeutic validation underscores the biochemical significance of allopregnanolone withdrawal as more than an epiphenomenon, but rather a direct mechanistic driver of PPD (Wang et al, 2021) [99].

The immune system also contributes to the biochemical landscape of postpartum depression. Neuroinflammation has emerged as a critical factor in mood disorders more broadly, and similar processes appear to be active in the postpartum state. Pregnancy is characterized by dynamic immune modulation, with a shift toward tolerance to accommodate the developing fetus. After delivery, this balance is recalibrated, sometimes resulting in heightened proinflammatory activity. Elevated levels of cytokines such as interleukin-6 and tumor necrosis factor-alpha have been observed in women with postpartum depressive symptoms, suggesting that exaggerated inflammatory responses may interact with neural

circuits governing mood. Proinflammatory cytokines are known to affect monoamine metabolism, neuroendocrine function, and neuroplasticity, all of which are implicated in depression pathophysiology (Tomoh *et al*, 2024) ^[92], (Ojika *et al*, 2024) ^[78]. Moreover, immune system dysregulation in the postpartum period can contribute to fatigue, cognitive disturbances, and impaired stress responses, further aggravating depressive symptomatology. This interplay between neuroimmune changes and mood regulation highlights the potential of anti-inflammatory strategies as adjunctive or alternative approaches to conventional therapies.

Another emerging area of research focuses on the gut-brain axis and its contribution to postpartum depression. The human gut microbiome undergoes significant alterations during pregnancy, with shifts in microbial diversity and composition that may persist into the postpartum period. These microbial changes influence systemic inflammation, neurotransmitter synthesis, and metabolic regulation, all of which can impact mood. Short-chain fatty acids produced by gut microbes, for example, can modulate neuroinflammation and affect the permeability of the blood-brain barrier. Dysbiosis, or microbial imbalance, has been associated with heightened stress reactivity and depressive-like behaviors in both animal models and clinical populations (Adeleke & Olajide, 2024) [4], (Oluwadamilola & Simeon, 2024) [83]. In the postpartum context, disruptions in the maternal microbiome may interact with hormonal and immune shifts to exacerbate vulnerability to depression. The bidirectional communication between gut microbes and central nervous system pathways underscores the plausibility of microbiometargeted therapies, such as probiotics, prebiotics, or dietary interventions, as promising future strategies for postpartum depression.

Hormonal fluctuations during and after pregnancy represent another core biochemical driver of postpartum depression. The perinatal period is marked by dramatic changes in reproductive hormones, particularly estrogen progesterone, which rise steeply during gestation and then plummet after childbirth. These abrupt hormonal shifts can destabilize mood-regulating systems, particularly those involving serotonin and GABAergic neurotransmission. Estrogen, for instance, modulates serotonergic activity and synaptic plasticity, and its withdrawal has been linked to mood disturbances. Similarly, the fall in progesterone and its metabolites, including neurosteroids allopregnanolone, can exacerbate depressive vulnerability (Adelusi *et al*, 2022) [6], (Isa, 2022) [55]. Beyond reproductive hormones, changes in oxytocin and thyroid function also play roles. Oxytocin, often termed the "bonding hormone," supports maternal-infant attachment and stress regulation, and reduced oxytocin signaling has been associated with impaired maternal behaviors and depressive symptoms. Thyroid dysfunction, including postpartum thyroiditis, can mimic or contribute to depressive presentations, underscoring the need for biochemical vigilance in the postpartum period. Figure 4 shows the current treatment pathway for major depressive disorder (MDD) presented by Alexander & Young, (2023) [24].

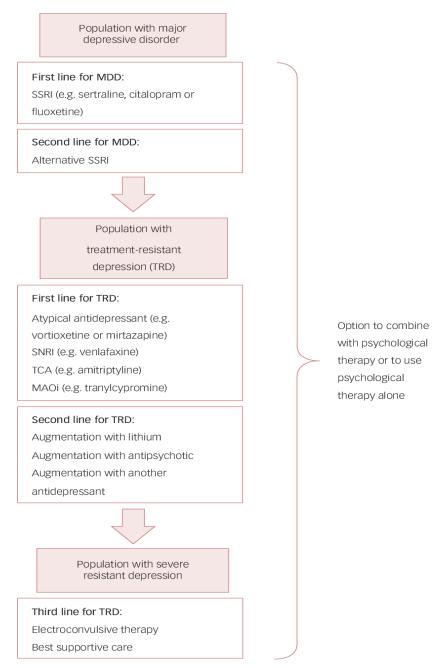


Fig 4: The current treatment pathway for major depressive disorder (MDD) (Alexander & Young, 2023).

These interconnected biochemical mechanisms HPA axis dysregulation, neurosteroid withdrawal, neuroinflammation, gut-brain communication, and hormonal fluctuations do not act in isolation but rather form a network of overlapping and interacting influences. For some women, genetic predisposition or epigenetic modifications may heighten sensitivity to these biochemical changes, tipping the balance toward depression. For others, environmental stressors or lack of social support may exacerbate underlying vulnerabilities, amplifying biochemical dysregulation. This complexity explains why postpartum depression manifests heterogeneously across individuals, with variable severity, onset, and course. It also underscores why a one-size-fits-all approach, such as reliance on standard antidepressants, is insufficient to address the disorder's multifaceted nature (Afolabi, Ajayi & Olulaja, 2024) [10], (Olulaja, Afolabi & Ajayi, 2024) [82].

Understanding these biochemical underpinnings is crucial for the development of next-generation therapies that move

antidepressant paradigm. bevond the conventional Treatments targeting the HPA axis may restore stress system balance; neurosteroid replacement or modulators can directly compensate for withdrawal-induced GABAergic deficits; anti-inflammatory interventions may dampen exaggerated immune activity; microbiome modulation could recalibrate gut-brain signaling; and hormonal therapies may help stabilize abrupt endocrine shifts. By aligning treatment development with these mechanisms, there is potential not only to achieve faster symptom relief but also to create more sustainable and individualized outcomes. Moreover, this knowledge emphasizes the need for biomarker-driven strategies that can identify which biochemical pathway predominates in a given patient, enabling precision treatment (Akpan, Awe & Idowu, 2019) [21].

Altogether, postpartum depression emerges as a condition with profound biochemical complexity, shaped by interdependent neuroendocrine, immune, metabolic, and microbial systems. Recognizing the centrality of these

pathways not only advances our scientific understanding of maternal mental health but also opens the door to more effective, targeted, and compassionate interventions. By shifting the therapeutic lens from symptom suppression to pathway-specific modulation, the field moves closer to developing a new generation of therapies that can address the root causes of postpartum depression, ultimately improving outcomes for mothers, infants, and families alike.

5. Next-Generation Therapeutic Pathways

The search for next-generation therapeutic pathways for postpartum depression reflects a pressing need to move beyond the traditional antidepressant paradigm and toward interventions that more directly target the biochemical processes underlying the disorder. One of the most promising avenues is neurosteroid-based therapy, particularly interventions that leverage the unique properties of allopregnanolone and its analogs. As a potent positive allosteric modulator of GABA-A receptors, allopregnanolone central role in promoting inhibitory neurotransmission and emotional stability during pregnancy (Ajayi & Akanji, 2023) [16]. The rapid withdrawal of this neurosteroid after childbirth has been implicated as a biochemical driver of postpartum depression, making replacement therapy an attractive option. Brexanolone, the intravenous formulation of allopregnanolone, has already demonstrated the transformative potential of this approach by offering rapid and robust symptom relief. However, its administration challenges, including the need for prolonged inpatient monitoring, limit scalability. This has spurred development of oral neurosteroid analogs such as zuranolone, which offers the advantage of home-based administration with potentially fewer logistical barriers. As research evolves, the refinement of neurosteroid modulators could expand treatment options, providing therapies that are not only effective but also accessible and safe for breastfeeding mothers, further validating the central role of neurosteroids in mood regulation.

Another critical therapeutic frontier is the modulation of immune and inflammatory pathways. Evidence consistently demonstrates that dysregulated neuroinflammation contributes to depressive symptoms in the postpartum period, with elevated cytokines influencing neurotransmitter metabolism, neuroplasticity, and stress reactivity. Antiinflammatory agents, ranging from nonsteroidal antiinflammatory drugs to novel cytokine inhibitors, hold promise in addressing this dimension of PPD (Imohiosen et al, 2022) [54]. While broad-spectrum anti-inflammatories may reduce systemic immune activation. immunomodulators that influence specific pathways such as interleukin-6 or tumor necrosis factor-alpha signaling may offer more precise benefits. Nutraceuticals with antiinflammatory properties, including omega-3 fatty acids and polyphenols, also provide an appealing, low-risk strategy for attenuating inflammatory responses. The possibility of integrating immunomodulatory therapies into clinical practice underscores the recognition that postpartum depression is not solely a disorder of neurotransmitter imbalance but also one deeply embedded in immune system dynamics. Future therapies that combine anti-inflammatory approaches with other biochemical interventions may yield synergistic effects, improving outcomes for patients whose depressive symptoms are tightly linked to neuroimmune dysregulation.

The gut-brain axis represents another emerging and exciting target for next-generation therapies. The maternal microbiome undergoes profound changes during pregnancy and postpartum, and its role in influencing systemic inflammation, neurotransmitter production, and stress physiology has gained increasing attention. Dysbiosis, or microbial imbalance, can disrupt communication between the gut and brain, exacerbating mood vulnerability. Microbiometargeted therapies seek to restore this balance and harness its influence on neural and immune pathways. Probiotics, which introduce beneficial bacterial strains, and prebiotics, which support the growth of favorable microbes, are being investigated for their potential to alleviate depressive symptoms. Clinical studies suggest that certain probiotic formulations can modulate inflammatory signaling and improve stress resilience, offering a safe adjunctive option for mothers seeking non-pharmacological treatments (Awe et al, 2024) [31], (Isa, 2024) [57]. Dietary interventions that support microbial diversity, such as fiber-rich and plant-based diets, may also enhance postpartum mood outcomes. The relative safety and accessibility of microbiome-targeted therapies position them as especially appealing in the postpartum context, where concerns about pharmacologic safety during lactation often limit treatment options. Although research is still in its early stages, the growing recognition of the gutbrain axis as a modifiable target signals a new horizon for holistic, non-invasive interventions.

Hormonal regulation strategies also play a crucial role in the evolving therapeutic landscape of postpartum depression. The perinatal period is characterized by dramatic fluctuations in estrogen, progesterone, oxytocin, and thyroid hormones, each of which contributes to mood regulation and maternal adaptation. Estrogen supplementation has been investigated as a treatment for postpartum depression, with some evidence suggesting improvements in mood and cognition due to its role in modulating serotonergic activity and synaptic plasticity (Ukpo et al, 2024) [98], (Isa, 2024) [57]. However, safety concerns and the need for individualized dosing remain barriers to widespread use. Oxytocin, often termed the bonding hormone, has garnered interest for its dual role in promoting maternal-infant bonding and mitigating stress responses. Reduced oxytocin signaling has been associated with postpartum depressive symptoms, and intranasal oxytocin administration has shown preliminary promise in enhancing maternal emotional regulation and caregiving behaviors. Thyroid dysfunction, particularly postpartum thyroiditis, is another biochemical factor that can contribute to depressive symptoms, making thyroid hormone replacement a critical therapeutic consideration. Hormonal regulation approaches highlight the importance of addressing endocrine shifts as not merely incidental to PPD but as central drivers of vulnerability and recovery, offering potential avenues for targeted and effective interventions (Cai, Wang & Zhang, 2019) [35].

In addition to targeting specific biochemical systems, the rise of precision medicine and biomarker-driven strategies heralds a transformative shift in how postpartum depression is conceptualized and treated. Rather than relying on a one-size-fits-all model, precision medicine aims to tailor interventions based on an individual's unique biochemical, genetic, and epigenetic profile. Identifying reliable biomarkers such as cortisol patterns, neurosteroid levels, inflammatory cytokines, or microbial signatures can guide the selection of therapies most likely to be effective for a

particular patient. For instance, patients with marked HPA axis dysregulation may benefit most from stress-modulating therapies, while those with pronounced inflammatory signatures may respond better to immunomodulatory interventions (Ajayi & Akanji, 2022) [13]. Advances in genomics and big data analytics are making it increasingly feasible to stratify patients and predict treatment response, thereby minimizing trial-and-error prescribing. The integration of biomarker-driven strategies also supports the development of combination therapies, where multiple pathways are targeted simultaneously for synergistic effect. Such an approach aligns with the complex and multifactorial nature of postpartum depression, offering hope for more precise, effective, and personalized care (Alanazi, 2019) [22], (Yim *et al*, 2015) [10²].

Collectively, these next-generation therapeutic pathways represent a paradigm shift in the treatment of postpartum depression. Neurosteroid-based interventions address rapid mood destabilization by replenishing inhibitory signaling; anti-inflammatory and immunomodulatory therapies target the immune dysregulation that fuels depressive symptoms; microbiome-targeted approaches leverage the gut-brain axis to restore systemic balance; hormonal regulation strategies stabilize endocrine shifts that trigger vulnerability; and precision medicine frameworks integrate biomarkers and genetics to deliver individualized treatments. By moving beyond conventional antidepressants and embracing these biochemical innovations, the field is positioned to deliver interventions that are faster, safer, more effective, and better aligned with the unique physiological context of the postpartum period (Adelusi *et al*, 2024) ^[5], (Isa, 2024) ^[57]. As these therapies advance, critical challenges remain, including ensuring safety during breastfeeding, expanding accessibility to diverse populations, and addressing cost barriers that often limit the reach of cutting-edge treatments. Yet the growing recognition of postpartum depression as a condition rooted in intricate biochemical pathways, rather than solely psychosocial stress, provides a strong foundation for innovation. By harnessing insights from neuroscience, endocrinology, immunology, and microbiome science, nextgeneration therapies promise not only to alleviate maternal suffering but also to safeguard infant development and family well-being. This holistic, mechanistically informed approach marks a new era in maternal mental health, one in which treatment transcends symptom suppression and seeks to restore the biochemical balance necessary for resilience and thriving in the postpartum period (Awe, 2017) [27], (Isa & Dem, 2014) [62].

6. Research and Clinical Evidence

Research and clinical evidence supporting the movement beyond antidepressants toward biochemical pathwayspecific therapies for postpartum depression has expanded considerably in recent years, though it remains a developing field. Preclinical studies have been pivotal in illuminating the neurobiological mechanisms underlying postpartum depression and providing a foundation for targeted interventions. Animal models simulating postpartum hormonal withdrawal, stress exposure, and immune activation have demonstrated that dysregulation of the hypothalamic-pituitary-adrenal axis, altered neurosteroid signaling, and heightened inflammatory responses can induce depressive-like behaviors. Rodent experiments have shown that withdrawal of allopregnanolone following simulated

delivery leads to impaired GABAergic neurotransmission and increased vulnerability to stress, which can be reversed by exogenous administration of neurosteroid analogs (Adeleke, 2023) [1]. These findings provided the first strong indication that restoring neurosteroid signaling could serve as a viable therapeutic pathway. Likewise, studies examining immune system activation have revealed that increased levels of proinflammatory cytokines impair neurogenesis and alter neurotransmitter metabolism, creating depressive phenotypes that mirror clinical presentations of postpartum depression. Such work not only validates the role of neuroinflammation in mood regulation but also suggests that immunomodulatory therapies may alleviate symptoms by restoring neuroimmune balance. Similarly, preclinical research into the gut-brain axis has shown that manipulating microbial composition in animal models influences stress reactivity, neurotransmitter levels, and depressive behaviors, underscoring the plausibility of microbiome-targeted interventions. These preclinical findings collectively establish that postpartum depression is not simply a psychosocial disorder but one with deep biochemical roots, opening the door to targeted, mechanism-based therapies (Gupta et al, 2019) [47], (Yim et al, 2009) [101].

Building on these insights, early clinical trials have begun to explore emerging therapies designed to modulate these pathways. The most prominent example is brexanolone, the intravenous formulation of allopregnanolone, which demonstrated rapid and significant reductions in depressive symptoms in randomized controlled trials. Unlike traditional antidepressants, which require weeks to take effect, brexanolone produced improvements within highlighting the therapeutic value of directly targeting neurosteroid withdrawal. These trials not only confirmed the mechanistic hypothesis established by animal research but also validated the feasibility of translating neurosteroid modulation into clinical practice (Scholten et al, 2018) [90]. The subsequent development of zuranolone, an oral neurosteroid analog, further extended this progress. Early trials of zuranolone showed robust antidepressant effects in women with postpartum depression, with a more convenient 14-day oral regimen compared to the intensive inpatient delivery required for brexanolone. These results suggest that neurosteroid-based therapies may form the foundation of a new generation of treatments capable of addressing both efficacy and accessibility (Starrs et al, 2018) [94], (Williams, Mohammed & Shields, 2016) [100].

Clinical investigations into anti-inflammatory immunomodulatory strategies for postpartum depression are also underway, though they remain in earlier stages. Some small-scale studies have examined the role of omega-3 fatty acid supplementation in reducing postpartum depressive symptoms, capitalizing on their anti-inflammatory and neuroprotective properties. While findings are mixed, there is consistent evidence that omega-3 intake can modulate inflammatory biomarkers and improve mood regulation in vulnerable populations. Trials exploring cytokine inhibitors and more targeted immunotherapies for postpartum depression are still limited but represent an important area of inquiry, given the accumulating evidence linking neuroinflammation and depressive outcomes. Microbiometargeted interventions, including probiotics and dietary strategies, have also been explored in pilot studies (Adeleke & Ajayi, 2024) [2], (Isa, 2024) [57]. Certain probiotic formulations have shown potential to reduce stress, anxiety, and depressive symptoms in postpartum women, though results remain preliminary. These studies indicate the feasibility of leveraging gut—brain communication to improve maternal mental health, but larger randomized controlled trials are needed to establish efficacy, optimal strains, and dosing strategies.

Hormonal interventions have also seen limited but intriguing clinical exploration. Estrogen supplementation trials have reported mixed outcomes, with some women experiencing significant improvement while others showed no benefit or experienced adverse effects. These inconsistencies highlight the complexity of hormonal regulation and the need for personalized approaches. Oxytocin administration. particularly via intranasal routes, has been investigated in small studies with some evidence of enhanced bonding and reduced anxiety in mothers with depressive symptoms (Ajayi & Akanji, 2022) [13]. However, data remain insufficient to recommend oxytocin as a standard therapy, and further research is required to better understand dosage, timing, and long-term safety. Thyroid hormone replacement, by contrast, has clear utility in cases where postpartum depression coexists with thyroid dysfunction, emphasizing the importance of biochemical screening and individualized treatment.

Despite these promising advances, significant gaps remain in translational research and scalability. Many of the therapies that show efficacy in preclinical studies or small clinical trials face substantial barriers when applied at population levels. Brexanolone, for instance, while groundbreaking in its efficacy, is limited by cost, infrastructure requirements, and the need for prolonged inpatient monitoring. These logistical challenges restrict access, particularly for women in underserved or rural areas (Gilbert, Nguyen & Scroggins, 2021) [43], (Olsen *et al*, 2013) [81]. Even zuranolone, though more convenient, remains costly and lacks long-term safety data for breastfeeding women, raising concerns about widespread adoption. Microbiome-targeted therapies, though appealing in principle, suffer from heterogeneity in formulations and study designs, making it difficult to establish standardized guidelines for clinical use (Nsa et al, 2018) [75]. Similarly, the translation of immunomodulatory therapies into postpartum care is hampered by the complexity of the immune system, safety concerns, and the risk of unintended suppression of beneficial immune functions in new mothers.

Another gap lies in the lack of biomarker-driven frameworks for treatment selection. While research has identified numerous biochemical alterations in women with postpartum depression ranging from altered cortisol responses to inflammatory cytokine elevations these findings have yet to be fully integrated into clinical decision-making. Without reliable biomarkers, treatment remains generalized, and patients are often subjected to trial-and-error prescribing, which delays recovery and increases risk. Precision medicine approaches that incorporate genetic, epigenetic, hormonal, and microbial markers could revolutionize this landscape, but such strategies require large-scale validation and the development of cost-effective diagnostic tools (Ajayi & Akanji, 2022) [13].

The scalability of these novel therapies also raises issues of equity and access. Advanced treatments like brexanolone and zuranolone may remain accessible only to privileged populations unless cost barriers are addressed, perpetuating disparities in maternal mental health care. Psychosocial

factors such as stigma, cultural perceptions of mental illness, and healthcare infrastructure further complicate the integration of biochemical therapies into routine practice. Moreover, many of the existing trials focus on relatively homogenous populations, leaving gaps in understanding how these therapies perform across diverse racial, socioeconomic, and geographic groups (Adeleke & Ajayi, 2023) [2].

Overall, the current body of research and clinical evidence strongly supports the potential of biochemical pathwayspecific interventions to transform the treatment of postpartum depression. Preclinical findings validate the mechanistic underpinnings of novel therapies, early clinical trials demonstrate efficacy and feasibility, and emerging treatments offer hope for faster and more precise interventions. At the same time, gaps in scalability, accessibility, biomarker integration, and population-level validation underscore the need for continued research and innovation. Addressing these challenges will require not only scientific advances but also policy support, healthcare system adaptations, and a commitment to equitable access. By bridging the gap between laboratory discoveries and realworld implementation, the field can move closer to developing next-generation therapies that truly address the multifaceted nature of postpartum depression and deliver meaningful improvements in maternal and infant health (Ramsteijn et al, 2018) [88], (Zanos et al, 2016) [103].

7. Ethical, Safety, and Accessibility Considerations

The development of next-generation therapies for postpartum depression, while holding immense promise, raises important questions of ethics, safety, and accessibility that must be addressed to ensure equitable and patient-centered care. Any therapeutic innovation that targets the biochemical underpinnings of maternal mood disturbances must be evaluated not only in terms of efficacy but also in terms of its safety profile during lactation, its affordability and accessibility to diverse populations, and the balance between technological innovation and the lived experiences of patients. These considerations are central to determining whether the promise of next-generation therapies will translate into meaningful improvements in maternal and child health outcomes (LeGates, Kvarta & Thompson, 2019) [67], (Oh *et al.*, 2015) [77].

Safety during lactation and infant development represents one of the most pressing concerns in the treatment of postpartum depression. The unique physiological context of the postpartum period means that pharmacological interventions cannot be evaluated solely on maternal outcomes but must also account for their potential effects on breastfeeding infants. Traditional antidepressants such as selective serotonin reuptake inhibitors have long been scrutinized for their transfer into breast milk, with sertraline and paroxetine generally considered safer due to their relatively low levels of secretion. However, even with reassuring data, many mothers remain hesitant to initiate or continue treatment out of fear of harming their infants (Awe & Akpan, 2017) [27]. The introduction of newer interventions such as neurosteroid-based therapies, including brexanolone and zuranolone, has intensified these concerns. Brexanolone, administered intravenously, has been shown to pass into breast milk in small amounts, though studies suggest that infant exposure is minimal. Nonetheless, the absence of longterm follow-up data on neurodevelopmental outcomes leaves unanswered questions that weigh heavily on clinical decision-making. Similarly, zuranolone, though more convenient as an oral agent, has shown evidence of secretion into breast milk, raising the need for more rigorous infant outcome studies before it can be widely recommended. The ethical imperative to protect infants from potential harm while also safeguarding maternal well-being creates a delicate balance. Therapies must be developed, tested, and monitored with a dual lens: ensuring rapid and effective maternal recovery while preventing unintended consequences on infant growth, neurodevelopment, and bonding (Duskin, 2005) [41], (Onuoha, 2019) [84], (Postolache *et al*, 2019) [87].

The issue of affordability and accessibility adds another layer of complexity. While breakthroughs like brexanolone have demonstrated unprecedented efficacy, their cost and delivery model pose formidable barriers. Brexanolone requires a continuous 60-hour infusion in a certified medical facility under a Risk Evaluation and Mitigation Strategy program, with treatment costs exceeding tens of thousands of dollars. Such logistical and financial barriers render it inaccessible to many women, particularly those in low-resource settings or without comprehensive insurance coverage. zuranolone, while more convenient and potentially less costly, remains expensive relative to conventional antidepressants (Ajayi & Akanji, 2021) [12], (Okolie et al, 2021) [79]. If next-generation therapies are to reshape the landscape of postpartum depression care, they must be designed with scalability in mind, ensuring that cost and infrastructure requirements do not relegate them to a small minority of patients. Accessibility is also shaped by broader social determinants of health. Rural mothers, women in lowand middle-income countries, and those with limited healthcare access are disproportionately affected by untreated postpartum depression yet stand to benefit the least from costly or specialized interventions (Cowan et al, 2016) [37], (Kraus et al, 2019) [65]. Ensuring equitable access means not only reducing costs but also considering delivery systems that can be integrated into primary care and community health Microbiome-targeted strategies, nutritional interventions, and affordable anti-inflammatory supplements may offer more accessible alternatives, but they too require validation and dissemination strategies that prioritize global applicability. Ethical healthcare design demands that novel therapies not deepen existing inequalities but instead expand opportunities for vulnerable populations to receive effective treatment (Kraus et al, 2019) [65], (Lüscher & Möhler, 2019)

Balancing innovation with patient-centered care is perhaps the most profound ethical challenge in the development of next-generation therapies. Scientific enthusiasm for mechanistic breakthroughs must be tempered by recognition of the lived realities of mothers navigating the postpartum period. A mother's decision to initiate treatment is not determined solely by efficacy data but is shaped by cultural beliefs, family support, personal values, and perceptions of risk. For example, while a rapid-acting therapy like brexanolone may appear revolutionary from a biomedical perspective, some mothers may view hospitalization for treatment as disruptive to maternal-infant bonding or impractical due to childcare responsibilities (Ajayi et al, 2024) [18], (Ilori, Kolawole & Olaboye, 2024) [51]. Similarly, even oral therapies like zuranolone may be met with hesitation if long-term safety data for infants remain unclear. Patient-centered care requires that therapies be evaluated not

only in clinical trials but also in the context of patient preferences, accessibility, and psychosocial needs. Shared decision-making, clear communication about risks and benefits, and culturally sensitive counseling must accompany the rollout of new therapies. Innovation should serve patients, not overshadow them, and treatments must be designed to align with the complex interplay of biological, psychological, and social dimensions of postpartum depression (Liu *et al*, 2024) [23], (Liu *et al*, 2023) [69].

The ethical considerations extend to the design of clinical trials themselves. Historically, lactating women have often been excluded from research studies due to concerns about infant safety, resulting in a lack of data precisely where it is most needed. This exclusion perpetuates uncertainty and contributes to hesitation in both clinicians and patients. Ethically robust trial design must include postpartum and lactating women in a manner that ensures both maternal and infant monitoring, generating the evidence base necessary to inform real-world practice. Similarly, diverse populations must be adequately represented in clinical trials (Gold, 2023) [45], (Jelen & Young, 2022) [63]. Much of the existing evidence for brexanolone and zuranolone comes from relatively homogenous samples, raising questions about the generalizability of findings across different racial, socioeconomic, and cultural groups. Without inclusive research, innovations risk perpetuating disparities rather than addressing them.

Beyond trial design, regulatory and healthcare systems must consider how to ensure equitable distribution of novel therapies. Policies that subsidize treatment costs, expand insurance coverage, and integrate new therapies into public healthcare systems will be critical for bridging the gap between scientific innovation and patient access. At the same time, ongoing surveillance of safety and efficacy must be prioritized, with post-marketing studies that track long-term outcomes in both mothers and infants. Transparency in reporting adverse effects, as well as mechanisms for patient feedback, will reinforce trust in new therapies and ensure that innovation is continually aligned with patient needs (Modak *et al.* 2023) [73]. (Palmer, 2011) [86].

et al, 2023) ^[73], (Palmer, 2011) ^[86]. Ultimately, the ethical, safe safety, and accessibility considerations of next-generation postpartum depression therapies highlight that the future of maternal mental health cannot be measured solely by clinical efficacy. While biochemical innovations offer unprecedented opportunities for rapid and targeted treatment, their success will depend on how well they safeguard infants, address affordability and access, and honor the values and preferences of patients. The postpartum period is a uniquely vulnerable time, and interventions must be designed with a holistic appreciation of maternal and infant health, family dynamics, and societal inequities. Future progress lies not only in discovering more powerful therapies but also in embedding those therapies within a framework of ethical responsibility, safety vigilance, and equitable care delivery (Mughal, Azhar & Siddiqui, 2018) [74], (Snair, 2024) [91]. By doing so, the promise of nextgeneration interventions can be realized in a way that transforms not just the science of postpartum depression but also the lived experiences of mothers and families worldwide.

8. Future Directions

The future of postpartum depression treatment lies in the ability to move beyond symptom management and antidepressant monotherapy toward an integrated,

multidimensional approach that reflects the complexity of the disorder. The integration of multidisciplinary research will be essential to this shift. Psychiatry, endocrinology, immunology, and microbiome science each provide crucial insights into distinct but interconnected pathways implicated in postpartum depression (Kaustinen, 2019) [64], (Lehman, David & Gruber, 2017) [68]. Psychiatrists bring expertise in clinical symptomatology and treatment frameworks; endocrinologists highlight the role of hormonal fluctuations, including estrogen, progesterone, oxytocin, and thyroid function; immunologists underscore the role of inflammatory cytokines and immune dysregulation; and microbiome researchers contribute an understanding of how gut microbial composition affects stress, mood regulation, and systemic inflammation. Bringing these disciplines together can create a holistic view of postpartum depression as a condition influenced by overlapping biological systems. Future research efforts will need to emphasize cross-disciplinary collaboration, enabling the design of therapies that target multiple biochemical mechanisms simultaneously rather than focusing on isolated pathways.

Alongside multidisciplinary research, artificial intelligence and big data hold extraordinary potential for reshaping the detection and treatment of postpartum depression. Current approaches to diagnosis and treatment selection often rely on subjective assessments and trial-and-error prescribing, leading to delays and suboptimal outcomes. By leveraging machine learning algorithms and large-scale patient data, researchers can identify patterns of biomarkers that correlate with treatment response (Groth et al, 2021) [46], (Gururajan et al, 2019) [48]. This includes cortisol profiles indicating HPA dysregulation, neurosteroid levels predicting responsiveness to brexanolone or zuranolone, inflammatory suggesting suitability cytokine panels immunomodulatory therapies, and microbial signatures indicating the potential for microbiome-targeted interventions. Big data analytics can also incorporate genetic and epigenetic information, creating a layered model of vulnerability and resilience. These predictive frameworks could pave the way for true precision medicine in postpartum depression, where therapies are not only effective but personalized. In practice, artificial intelligence-driven platforms might assist clinicians in tailoring interventions to each patient, reducing the burden of trial-and-error and accelerating recovery during the critical postpartum period. Future directions also point toward the potential for combination therapies that move beyond monotherapy antidepressants. Given that postpartum depression arises from multiple overlapping systems, it is unlikely that a single agent can address all the relevant pathways. Combination strategies may involve pairing neurosteroid modulators with anti-inflammatory agents, or integrating microbiometargeted interventions with hormonal therapies. Psychotherapy, though not a biochemical intervention, can also be meaningfully combined with biologically targeted treatments to reinforce resilience and address psychosocial stressors. For instance, a woman receiving zuranolone might simultaneously benefit from probiotic supplementation and interpersonal psychotherapy, with each component addressing a distinct dimension of the disorder (Dunkel Schetter et al, 2016) [40], (Exclusivity, 2019) [42]. The concept of multi-modal therapy mirrors approaches in oncology and cardiology, where combination regimens have become standard to maximize efficacy and minimize relapse. For

postpartum depression, such strategies could represent the next logical evolution, acknowledging the condition's heterogeneity and tailoring treatments accordingly.

Policy and healthcare systems will play a decisive role in determining whether these innovations are broadly adopted or remain limited to privileged populations. The approval of brexanolone and zuranolone represents major breakthroughs, yet their impact is constrained by cost, infrastructure requirements, and insurance coverage Policymakers will need to confront questions of affordability and equity, ensuring that treatments are not reserved for a select few. Insurance expansion, government subsidies, and public-private partnerships could help mitigate costs and support wider dissemination. Equally important is the integration of novel therapies into maternal healthcare frameworks (Douthard, Whitten & Clayton, 2022) [39], (Stana & Miller, 2019) [93]. Training primary care providers, obstetricians, and midwives in recognizing postpartum depression and understanding biochemical treatment options will be essential to scaling access. Policies that promote maternal mental health as a public health priority, alongside programs that emphasize early screening, biomarker testing, and culturally sensitive care, can create the infrastructure needed for these therapies to flourish.

Ethical considerations will also intersect with future policy directions. The inclusion of postpartum and lactating women in clinical trials, the transparent communication of long-term infant safety data, and the representation of diverse populations in research will be central to building trust. The rapid integration of artificial intelligence into clinical decision-making raises additional ethical questions about data privacy, algorithmic bias, and patient autonomy. Ensuring that AI platforms are transparent, equitable, and grounded in patient-centered principles will be vital to their acceptance and effectiveness (Alanezi *et al*, 2024) [23], (Dennis *et al*, 2024) [38].

The overarching trajectory points toward a future in which postpartum depression treatment is no longer constrained by the limitations of slow-acting antidepressants and fragmented care. Instead, it will be defined by mechanistically informed, personalized, and multi-modal strategies that address the biological, psychological, and social dimensions of the disorder. By uniting psychiatry, endocrinology, immunology, and microbiome science, leveraging AI for precision care, exploring synergistic combinations of therapies, and enacting supportive policy frameworks, the field has the potential to radically transform maternal mental health. Such advances would not only alleviate the burden of postpartum depression but also safeguard infant development, strengthen family well-being, and contribute to healthier societies. The challenge for the future is not merely to innovate scientifically but to translate these innovations into accessible, safe, and patient-centered care that reaches all women, regardless of geography, socioeconomic status, or cultural context.

9. Conclusion

Postpartum depression emerges as a profoundly complex disorder shaped by interconnected biochemical, hormonal, immune, and microbial pathways that extend far beyond the scope of conventional antidepressant treatments. Dysregulation of the hypothalamic–pituitary–adrenal axis, abrupt withdrawal of neurosteroids such as allopregnanolone, heightened neuroinflammatory activity, imbalances in the

gut-brain axis, and rapid hormonal shifts during and after childbirth all contribute to maternal vulnerability in ways that standard therapies often fail to address. Recognizing these pathways as therapeutic targets offers a deeper understanding of postpartum depression not as a uniform psychological disturbance, but as a condition with measurable biological signatures that can guide precision interventions.

The rise of neurosteroid-based treatments, immunomodulatory agents, microbiome-targeted strategies, hormonal regulation therapies, and biomarker-driven precision medicine highlights the transformative potential of next-generation approaches in postpartum depression management. Unlike traditional antidepressants, which are hindered by delayed onset, incomplete efficacy, and concerns about safety during lactation, these novel therapies promise rapid relief, mechanism-specific benefits, and the possibility of tailoring care to each patient's biochemical profile. By integrating psychiatry, endocrinology, immunology, and microbiome science, and leveraging artificial intelligence to match patients with the most effective therapies, the future of postpartum depression care can be redefined. These innovations hold the promise not only of alleviating maternal suffering but also of safeguarding infant development, strengthening maternal-child bonding, and promoting family resilience, ultimately transforming postpartum depression from a persistently under-treated disorder into one with clear, targeted, and effective solutions.

Yet, realizing this promise requires sustained research, robust clinical innovation, and frameworks that prioritize patient-centered care. Long-term safety studies, especially concerning lactation and infant development, are essential to build trust and ensure widespread adoption. Policies that address affordability, accessibility, and equity must accompany scientific advances to prevent disparities in maternal mental healthcare. Above all, future strategies must honor the voices and lived experiences of mothers, ensuring that treatments are not only biologically effective but also socially and ethically aligned with their needs. By combining rigorous science with compassionate care, the next generation of therapies can finally move beyond antidepressants and usher in a new era of holistic, safe, and transformative management of postpartum depression.

10. References

- Adeleke O. Conceptual framework for Revenue Cycle Management and Hospital Billing Optimization: Evaluating the Financial Impact of Home Health Agencies in the US Healthcare Ecosystem [Internet]. 2023 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- Adeleke O, Ajayi SAO. A model for optimizing Revenue Cycle Management in Healthcare Africa and USA: AI and IT Solutions for Business Process Automation [Internet]. 2023 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 3. Adeleke O, Ajayi SAO. Transforming the Healthcare Revenue Cycle with Artificial Intelligence in the USA [Internet]. 2024 [cited 2025 Nov 1³]. Available from: [URL not provided]
- Adeleke O, Olajide O. Conceptual Framework for Health-Care Project Management: Past and Emerging Models [Internet]. 2024 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 5. Adelusi BS, Osamika D, Chinyeaka M, Kelvin-Agwu

- AYM, Ikhalea N. A Data-Driven Framework for Early Detection and Prevention of Non-Communicable Diseases in Healthcare Systems [Internet]. 2024 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- Adelusi BS, Osamika D, Kelvin-Agwu MC, Mustapha AY, Ikhalea N. A deep learning approach to predicting diabetes mellitus using electronic health records. J Front Multidiscip Res. 2022;3(1):47-56.
- Adeshina YT. Leveraging Business Intelligence Dashboards For Real-Time Clinical And Operational Transformation In Healthcare Enterprises [Internet]. 2021 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 8. Adeshina YT. Strategic implementation of predictive analytics and business intelligence for value-based healthcare performance optimization in US health sector [Internet]. 2023 [cited 2025 Nov 1³]. Available from: [URL not provided]
- Adeshina YT, Owolabi BO, Olasupo SO. A US National Framework for Quantum-Enhanced Federated Analytics In Population Health Early-Warning Systems [Internet]. 2023 [cited 2025 Nov 1³]. Available from: [URL not provided]
- Afolabi O, Ajayi S, Olulaja O. Barriers to healthcare among undocumented immigrants. In: 2024 Illinois Minority Health Conference; 2024 Oct 23; Naperville, IL. Springfield (IL): Illinois Department of Public Health; 2024.
- 11. Afolabi O, Ajayi S, Olulaja O. Digital health interventions among ethnic minorities: Barriers and facilitators. Paper presented at: 2024 Illinois Minority Health Conference; 2024 Oct 23; Naperville, IL.
- 12. Ajayi SAO, Akanji OO. Impact of BMI and Menstrual Cycle Phases on Salivary Amylase: A Physiological and Biochemical Perspective [Internet]. 2021 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 13. Ajayi SAO, Akanji OO. Air Quality Monitoring in Nigeria's Urban Areas: Effectiveness and Challenges in Reducing Public Health Risks [Internet]. 2022 [cited 2025 Nov 1³]. Available from: [URL not provided]
- Ajayi SAO, Akanji OO. Efficacy of Mobile Health Apps in Blood Pressure Control in USA [Internet]. 2022 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 15. Ajayi SAO, Akanji OO. Substance Abuse Treatment through Tele health: Public Health Impacts for Nigeria [Internet]. 2022 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 16. Ajayi SAO, Akanji OO. AI-powered Telehealth Tools: Implications for Public Health in Nigeria [Internet]. 2023 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 17. Ajayi SAO, Akanji OO. Impact of AI-Driven Electrocardiogram Interpretation in Reducing Diagnostic Delays [Internet]. 2023 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 18. Ajayi SA-O, Onyeka MU-E, Jean-Marie AE, Olayemi OA, Olawaleke A, Frank NO, *et al.* Strengthening primary care infrastructure to expand access to preventative public health services. World J Adv Res Rev. 2024;26(1).
- 19. Akanji OO, Ajayi SA-O. Efficacy of mobile health apps in blood pressure control. Int J Multidiscip Res Growth Eval. 2022;3(5):635-40. doi:10.54660/.IJMRGE.2022.3.5.635-640
- 20. Akpan UU, Adekoya KO, Awe ET, Garba N, Oguncoker

- GD, Ojo SG. Mini-STRs screening of 12 relatives of Hausa origin in northern Nigeria. Niger J Basic Appl Sci. 2017;25(1):48-57.
- 21. Akpan UU, Awe TE, Idowu D. Types and frequency of fingerprint minutiae in individuals of Igbo and Yoruba ethnic groups of Nigeria. Ruhuna J Sci. 2019;10(1).
- 22. Alanazi AF. Maternal Mental Health: Understanding and Addressing Postpartum Depression [Internet]. 2019 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 23. Alanezi AF, Ibrahim AH, Ibrahim NH, Ibrahim EH, Alqousi HM, Alonazi MF, *et al.* Postpartum Depression: Endocrine Factors, Biochemical Markers, and the Role of Nursing Interventions. J Int Crisis Risk Commun Res. 2024;7(S10):283.
- Alexander L, Young AH. Recent advances in the psychopharmacology of major depressive disorder.
 BJPsych Adv. 2023;29(2):117-30. doi:10.1192/bja.2022.43
- 25. Amer SA, Zaitoun NA, Abdelsalam HA, Abbas A, Ramadan MS, Ayal HM, *et al.* Exploring predictors and prevalence of postpartum depression among mothers: Multinational study. BMC Public Health. 2024;24(1):1308. doi:10.1186/s12889-024-18674-8
- 26. Awe ET. Hybridization of snout mouth deformed and normal mouth African catfish Clarias gariepinus. Anim Res Int. 2017;14(3):2804-8.
- 27. Awe ET, Akpan UU. Cytological study of Allium cepa and Allium sativum [Internet]. 2017 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 28. Awe ET, Akpan UU, Adekoya KO. Evaluation of two MiniSTR loci mutation events in five Father-Mother-Child trios of Yoruba origin. Niger J Biotechnol. 2017;33:120-4.
- 29. Awe T. Cellular Localization Of Iron-Handling Proteins Required For Magnetic Orientation In C. Elegans [Internet]. 2021 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 30. Awe T, Akinosho A, Niha S, Kelly L, Adams J, Stein W, *et al.* The AMsh glia of C. elegans modulates the duration of touch-induced escape responses. bioRxiv. 2023:2023-12. doi:10.1101/2023.12.XX.XXXXXX
- 31. Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci. 2024;11(1):49. doi:10.3934/Neuroscience.202400X
- 32. Bener A, Burgut FT, Ghuloum S, Sheikh J. A study of postpartum depression in a fast developing country: prevalence and related factors. Int J Psychiatry Med. 2012;43(4):325-37. doi:10.2190/PM.43.4.c
- 33. Bener A, Gerber LM, Sheikh J. Prevalence of psychiatric disorders and associated risk factors in women during their postpartum period: a major public health problem and global comparison. Int J Womens Health. 2012;4:191-200. doi:10.2147/IJWH.S29380
- 34. Bhagar R, Gill SS, Le-Niculescu H, Yin C, Roseberry K, Mullen J, *et al.* Next-generation precision medicine for suicidality prevention. Transl Psychiatry. 2024;14(1):362. doi:10.1038/s41398-024-03056-5
- 35. Cai M, Wang H, Zhang X. Potential anti-depressive treatment maneuvers from bench to bedside. In: Depressive disorders: Mechanisms, measurement and management. Singapore: Springer; 2019. p. 277-95.
- 36. Carlini SV, Osborne LM, Deligiannidis KM. Current

- pharmacotherapy approaches and novel GABAergic antidepressant development in postpartum depression. Dialogues Clin Neurosci. 2023;25(1):92-100. doi:10.1080/19585969.2023.2271272
- 37. Cowan CS, Callaghan BL, Kan JM, Richardson R. The lasting impact of early-life adversity on individuals and their descendants: Potential mechanisms and hope for intervention. Genes Brain Behav. 2016;15(1):155-68. doi:10.1111/gbb.12263
- 38. Dennis CL, Singla DR, Brown HK, Savel K, Clark CT, Grigoriadis S, *et al.* Postpartum depression: A clinical review of impact and current treatment solutions. Drugs. 2024;84(6):645-59. doi:10.1007/s40265-024-02035-5
- 39. Douthard R, Whitten LA, Clayton JA. Research on women's health: Ready for the future. J Womens Health (Larchmt). 2022;31(2):133-44. doi:10.1089/jwh.2021.0574
- Dunkel Schetter C, Saxbe DE, Cheadle AC, Guardino CM. Postpartum depressive symptoms following consecutive pregnancies: Stability, change, and mechanisms. Clin Psychol Sci. 2016;4(5):909-18. doi:10.1177/2167702616640923
- 41. Duskin CU. Experiences of social comparison in a postpartum depression support group [dissertation]. San Francisco (CA): California Institute of Integral Studies; 2005.
- 42. Exclusivity B. 31st Annual Scientific Sessions: Transforming the Future of Nursing Research: Imagination, Innovation and Engagement. Nurs Res. 2019;68(2):E21.
- 43. Gilbert LR, Nguyen JL, Scroggins MJ. Women's Health Equity. In: Health Equity: A Solutions-Focused Approach. New York: Springer Publishing Company; 2021. p. 177-96.
- 44. Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci. 2016;51:50-72. doi:10.1016/j.ijdevneu.2016.04.008
- 45. Gold PW. Breaking Through Depression: A Guide to the Next Generation of Promising Research and Revolutionary New Treatments. New York: Twelve; 2023.
- 46. Groth SW, Fernandez ID, Block RC, Thurston SW, Wong E, Brunner J, *et al.* Biological changes in the pregnancy-postpartum period and subsequent cardiometabolic risk UPSIDE MOMS: A research protocol. Res Nurs Health. 2021;44(4):608-19. doi:10.1002/nur.22146
- 47. Gupta A, Pajai S, Gupta A, Thakur AS, Muneeba S, Batra N, *et al*. In the shadows of motherhood: a comprehensive review of postpartum depression screening and intervention practices. Cureus. 2024;16(2):eXXXXX. doi:10.7759/cureus.XXXXX
- 48. Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci. 2019;20(11):686-701. doi:10.1038/s41583-019-0221-6
- 49. Hahn-Holbrook J, Cornwell-Hinrichs T, Anaya I. Economic and health predictors of national postpartum depression prevalence: a systematic review, metaanalysis, and meta-regression of 291 studies from 56 countries. Front Psychiatry. 2018;8:248. doi:10.3389/fpsyt.2017.00248

- 50. Halliday NN. Assessment of Major Air Pollutants, Impact on Air Quality and Health Impacts on Residents: Case Study of Cardiovascular Diseases [master's thesis]. Cincinnati (OH): University of Cincinnati; 2021.
- 51. Ilori O, Kolawole TO, Olaboye JA. Ethical dilemmas in healthcare management: A comprehensive review. Int Med Sci Res J. 2024;4(6):703-25.
- 52. Imohiosen CE, Tomoh BO, Soyege OS, Nwokedi CN, Mustapha AY, Mbata AO, *et al.* Leadership in healthcare: Building high-performing teams and cultivating a culture of continuous improvement. J Front Multidiscip Res. 2024;5(2):36-41.
- 53. Imohiosen C, Olinmah FI, Adams OA, Otokiti BO, Abutu DE, Okoli I. Constructing organizational engagement dashboards for strategic communication in academic institutions. Int J Adv Multidiscip Res Stud. 2023;3(6):1803-10.
- 54. Imohiosen C, Otokiti BO, Olinmah FI, Adams OA, Abutu DE, Okoli I. Designing interactive visual analysis frameworks for higher education: Feedback and satisfaction insights. Int J Soc Sci Except Res. 2022;1(2):156-63.
- 55. Isa AK. Occupational hazards in the healthcare system. Paper presented at: Gwarinpa General Hospital; 2022 Apr 27; Abuja, Nigeria.
- 56. Isa AK. Management of bipolar disorder. Paper presented at: Maitama District Hospital; 2022 Mar 17; Abuja, Nigeria.
- 57. Isa AK. Exploring digital therapeutics for mental health: Ai-driven innovations in personalized treatment approaches. World J Adv Res Rev. 2024;24(3):10-30574.
- 58. Isa AK. Strengthening connections: Integrating mental health and disability support for urban populations. Paper presented at: Illinois Public Health Association 83rd Annual Conference; 2024 Nov 19; Springfield, IL.
- 59. Isa AK. Empowering minds: The impact of community and faith-based organizations on mental health in minority communities: Systematic review. Paper presented at: Illinois Minority Health Conference; 2024 Oct 23; Naperville, IL.
- 60. Isa AK. IDPH public health career presentation showcase (for junior high/high school students in Illinois). Presentation delivered at: UIS Center for State Policy and Leadership Showcase; 2024 Sep 25; Springfield, IL.
- 61. Isa AK, Johnbull OA, Ovenseri AC. Evaluation of Citrus sinensis (orange) peel pectin as a binding agent in erythromycin tablet formulation. World J Pharm Pharm Sci. 2021;10(10):188-202.
- 62. Isa A, Dem B. Integrating Self-Reliance Education Curriculum For Purdah Women In Northern Nigeria: A Panacea For A Lasting Culture Of Peace [Internet]. 2014 [cited 2025 Nov 1^{3]}. Available from: [URL not provided]
- 63. Jelen LA, Young AH. New antidepressants: New day or false dawn. Eur Neuropsychopharmacol. 2022;63:1-3. doi:10.1016/j.euroneuro.2022.08.001
- 64. Kaustinen K. Building a new toolbox [Internet]. 2019 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 65. Kraus C, Kadriu B, Lanzenberger R, Zarate CA Jr, Kasper S. Prognosis and improved outcomes in major depression: a review. Transl Psychiatry. 2019;9(1):127. doi:10.1038/s41398-019-0460-4
- 66. Kraus C, Wasserman D, Henter ID, Acevedo-Diaz E,

- Kadriu B, Zarate CA Jr. The influence of ketamine on drug discovery in depression. Drug Discov Today. 2019;24(10):2033-43. doi:10.1016/j.drudis.2019.07.007
- 67. LeGates TA, Kvarta MD, Thompson SM. Sex differences in antidepressant efficacy. Neuropsychopharmacology. 2019;44(1):140-54. doi:10.1038/s41386-018-0185-9
- 68. Lehman BJ, David DM, Gruber JA. Rethinking the biopsychosocial model of health: Understanding health as a dynamic system. Soc Personal Psychol Compass. 2017;11(8):e12328. doi:10.1111/spc3.12328
- 69. Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine. 2023;90:104527. doi:10.1016/j.ebiom.2023.104527
- Liu X, Wang S, Wang G. Prevalence and risk factors of postpartum depression in women: A systematic review and meta-analysis. J Clin Nurs. 2022;31(19-20):2665-77. doi:10.1111/jocn.16121
- 71. Liu Y, Zhang L, Guo N, Jiang H. Postpartum depression and postpartum post-traumatic stress disorder: prevalence and associated factors. BMC Psychiatry. 2021;21(1):487. doi:10.1186/s12888-021-03432-7
- 72. Lüscher B, Möhler H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Res. 2019;8:F1000 Faculty Rev-751. doi:10.12688/f1000research.18758.1
- 73. Modak A, Ronghe V, Gomase KP, Mahakalkar MG, Taksande V, Dukare KP. A comprehensive review of motherhood and mental health: postpartum mood disorders in focus. Cureus. 2023;15(9):eXXXXX. doi:10.7759/cureus.XXXXX
- Mughal S, Azhar Y, Siddiqui W. Postpartum depression [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 [updated 2023 Oct 7; cited 2025 Nov 1³]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519070/
- 75. Nsa B, Anyebe V, Dimkpa C, Aboki D, Egbule D, Useni S, *et al*. Impact of active case finding of tuberculosis among prisoners using the WOW truck in North Central Nigeria. Int J Tuberc Lung Dis. 2018;22(11):S444.
- 76. Oboh A, Uwaifo F, Gabriel OJ, Uwaifo AO, Ajayi SAO, Ukoba JU. Multi-Organ toxicity of organophosphate compounds: hepatotoxic, nephrotoxic, and cardiotoxic effects. Int Med Sci Res J. 2024;4(8):797-805.
- 77. Oh G, Wang SC, Pal M, Chen ZF, Khare T, Tochigi M, *et al.* DNA modification study of major depressive disorder: beyond locus-by-locus comparisons. Biol Psychiatry. 2015;77(3):246-55. doi:10.1016/j.biopsych.2014.06.016
- 78. Ojika FU, Onaghinor O, Esan OJ, Daraojimba AI, Ubamadu BC. Designing a business analytics model for optimizing healthcare supply chains during epidemic outbreaks: Enhancing efficiency and strategic resource allocation. Int J Multidiscip Res Growth Eval. 2024;5(1):1657-67.
- 79. Okolie CI, Hamza O, Eweje A, Collins A, Babatunde GO, Ubamadu BC. Leveraging Digital Transformation and Business Analysis to Improve Healthcare Provider Portal. Iconic Res Eng J. 2021;4(10):253-7.
- 80. Olajide JO, Otokiti BO, Nwani S, Ogunmokun AS, Adekunle BI, Fiemotongha JE. A Framework for Gross Margin Expansion Through Factory-Specific Financial

- Health Checks. IRE J. 2021;5(5):487-9.
- 81. Olsen J, Nøhr EA, Thomsen RW, Støvring H. Non-communicable disease epidemic: Epidemiology in action (EuroEpi 2013 and NordicEpi 2013). Methods. 2013;12:1-8.
- 82. Olulaja O, Afolabi O, Ajayi S. Bridging gaps in preventive healthcare: Telehealth and digital innovations for rural communities. Paper presented at: 2024 Illinois Minority Health Conference; 2024 Oct 23; Naperville, IL. Springfield (IL): Illinois Department of Public Health; 2024.
- 83. Oluwadamilola A, Simeon A-O A. Transforming the healthcare revenue cycle with artificial intelligence in the USA. Int J Multidiscip Res Growth Eval. 2024;5(6):1670-84.
- 84. Onuoha O. A Staff Education Module for Depression Screening in Acute Care [doctoral dissertation]. Minneapolis (MN): Walden University; 2019.
- 85. Owot JA, Imohiosen CE, Ukpo SD, Ajuluchukwu P. Tailored Spiritual Support for the Aging Population: Developing a Model for Religious Counseling in Long-Term Care Facilities [Internet]. 2024 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 86. Palmer E. A Qualitative Study of Existential Issues in Postpartum Depression: An Unspoken Truth [dissertation]. Colorado Springs (CO): University of the Rockies; 2011.
- 87. Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet. 2019;180(3):186-203. doi:10.1002/ajmg.b.32721
- 88. Ramsteijn AS, Jašarević E, Houwing DJ, Bale TL, Olivier JD. Antidepressant treatment modulates the gut microbiome and metabolome during pregnancy and lactation in rats with a depressive-like phenotype. bioRxiv. 2018:501742. doi:10.1101/501742
- 89. Saharoy R, Potdukhe A, Wanjari M, Taksande AB. Postpartum depression and maternal care: exploring the complex effects on mothers and infants. Cureus. 2023;15(7):eXXXXXX. doi:10.7759/cureus.XXXXX
- 90. Scholten J, Eneogu R, Ogbudebe C, Nsa B, Anozie I, Anyebe V, *et al.* Ending the TB epidemic: role of active TB case finding using mobile units for early diagnosis of tuberculosis in Nigeria. Int Union Against Tuberc Lung Dis. 2018;11:22.
- 91. Snair M; National Academies of Sciences, Engineering, and Medicine. Overview of Research Gaps for Selected Conditions in Women's Health Research at the National Institutes of Health. Washington (DC): National Academies Press; 2024.
- 92. Soyege OS, Nwokedi CN, Tomoh BO, Mustapha AY, Mbata AO, Balogun OD, *et al.* Public Health Crisis Management and Emergency Preparedness: Strengthening Healthcare Infrastructure Against Pandemics and Bioterrorism Threats. J Front Multidiscip Res. 2024;5(2):52-68. doi:10.54660/.IJFMR.2024.5.2.52-68
- 93. Stana A, Miller AR. "Being a mom= having all the feels": social support in a postpartum depression online support group. Atl J Commun. 2019;27(5):297-310. doi:10.1080/15456870.2019.1610922

- 94. Starrs AM, Ezeh AC, Barker G, Basu A, Bertrand JT, Blum R, *et al.* Accelerate progress sexual and reproductive health and rights for all: report of the Guttmacher–Lancet Commission. Lancet. 2018;391(10140):2642-92. doi:10.1016/S0140-6736(18)30293-9
- 95. Thurgood S, Avery DM, Williamson L. Postpartum depression (PPD). Am J Clin Med. 2009;6(2):17-22.
- 96. Tolossa T, Fetensa G, Yilma MT, Abadiga M, Wakuma B, Besho M, et al. Postpartum depression and associated factors among postpartum women in Ethiopia: a systematic review and meta-analysis, 2020. Public Health Rev. 2020;41(1):21. doi:10.1186/s40985-020-00136-8
- 97. Tomoh BO, Soyege OS, Nwokedi CN, Mustapha AY, Mbata AO, Balogun OD, *et al.* Leadership in Healthcare: Building High-Performing Teams and Cultivating a Culture of Continuous Improvement [Internet]. 2024 [cited 2025 Nov 1³]. Available from: [URL not provided]
- 98. Ukpo SD, Imohiosen CE, Owot JA, Ajuluchukwu P. The impact of religious and spiritual counseling on mental health outcomes in geriatric care. Int J Multidiscip Res Growth Eval. 2024;5(6):1538-47.
- 99. Wang Z, Liu J, Shuai H, Cai Z, Fu X, Liu Y, *et al.* Mapping global prevalence of depression among postpartum women. Transl Psychiatry. 2021;11(1):543. doi:10.1038/s41398-021-01663-6
- 100. Williams DR, Mohammed SA, Shields AE. Understanding and effectively addressing breast cancer in African American women: Unpacking the social context. Cancer. 2016;122(14):2138-49. doi:10.1002/cncr.29935
- 101.Yim IS, Glynn LM, Schetter CD, Hobel CJ, Chicz-DeMet A, Sandman CA. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy. Arch Gen Psychiatry. 2009;66(2):162-9. doi:10.1001/archgenpsychiatry.2008.533
- 102.Yim IS, Tanner Stapleton LR, Guardino CM, Hahn-Holbrook J, Dunkel Schetter C. Biological and psychosocial predictors of postpartum depression: systematic review and call for integration. Annu Rev Clin Psychol. 2015;11(1):99-137. doi:10.1146/annurev-clinpsy-101414-020426
- 103.Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, *et al.* NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481-6. doi:10.1038/nature17998

How to Cite This Article

Owokoya AOO. Beyond Antidepressants: Exploring Biochemical Pathways for Next-Generation Postpartum Depression Therapies. International Journal of Medical and All Body Health Research. 2025;6(4):77-92. doi:10.54660/IJMBHR.2025.6.4.77-92.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.